

CITY OF NAPLES

2020 - 2021 Annual Surface Water and Pump Station Monitoring and Analysis Report

FINAL REPORT

Prepared for

City of Naples

Streets & Stormwater 295 Riverside Circle Naples, FL 34102

Prepared by

Wood Environment & Infrastructure Solutions, Inc.

1101 Channelside Drive, Suite 200 Tampa, FL 33602

Wood Project No. 600734.1

January 14, 2022

EXECUTIVE SUMMARY

Wood conducted water quality sampling at 22 lakes (stormwater ponds) and three pump stations within the City of Naples. Samples were collected monthly from the outfalls from October 2020 through September 2021 and were analyzed for a variety of water quality parameters, including nutrients, chlorophyll-a, copper, and fecal indicator bacteria (*Enterococci* and *Escherichia coli*). A handheld meter was used to monitor field parameters (e.g., water temperature, dissolved oxygen saturation) at each sampling location during collection. The water quality data from 2020 – 2021 was combined with the City of Naples' existing stormwater lake dataset that included water quality data for select lakes beginning in 2014. Data analysis of the 2020-2021 and long-term datasets (2014 – 2021) included calculation of trends and correlations, a multivariate principal components analysis, and an informal impairment assessment of the lakes using non-applicable water quality criteria for the waterbodies receiving stormwater lake discharge.

Major findings include identification of statistically significant trends in the long-term dataset in 12 of the stormwater lakes and three pump stations for nutrients, chlorophyll-a, copper, and fecal indicator bacteria (*Enterococci* and fecal coliform). Most significant trends were decreasing, but increasing trends were identified for nitrate + nitrite, ammonia, and orthophosphate in Alligator Lake, nitrate + nitrite at the Port Royal pump station, orthophosphate in Lake Manor, chlorophyll-a in Devils Lake, and copper in Lake Suzanne. Statistically significant increasing trends for *Enterococci*, the fecal indicator bacteria for marine waters, were identified in Alligator Lake, Sun Lake Terrace, Forest Lake, and South Lake. Statistically significant increasing trends for fecal coliform were identified in Forest Lake, Lake Manor, North Lake, and South Lake. Overall, sampling locations that stood out with the highest average concentrations of nutrients, chlorophyll-a, and fecal indicator bacteria include North Lake, South Lake, Lantern Lake, and the Port Royal Pumping station.

Stormwater lakes were commonly found to have concentration of nutrients, chlorophyll-a, and *Enterococci* in exceedance of water quality criteria in downstream waterbodies, which include the Gordon River, Moorings Bay, and Naples Bay. It is important to note that the regulatory water quality impairment criteria do not apply to stormwater lakes since they are manmade features and are not classified as Waters of the State. Stormwater lakes are designed to receive rainfall runoff containing nutrients and other pollutants. The comparison to downstream water quality criteria is simply a comparison tool and the downstream water quality criteria do not represent target water quality conditions in stormwater lakes.

The observed elevated concentrations and increasing trends only provide a small snapshot into the water quality conditions of the stormwater lakes that are discharging into downstream waterbodies. This information can be used as a preliminary screening tool to assess if there may be a water quality issue at hand in each lake. Generally, in the City of Naples, water quality pollutants can be introduced to the environment via human activities and delivered to surface waters via stormwater. For example, stormwater runoff from lawns can include nutrients from yard waste, pet waste, and fertilizers (however, atmospheric deposition is also a source of nutrients in the environment). Metals can also be introduced to the aquatic environment via human activities (including from roadways and, in the case of copper, algaecide application to surface waters). However, the in-lake concentrations of the water quality parameters measured in the present study are dependent on variables that are not captured in the monthly water quality sampling. variables include characteristics These the different watershed for each lake (including the land use and fertilizer activity) and in-lake processes (for example, in some lakes, sediments may be a source of nutrients). Due to the observed elevated concentrations of certain constituents, coupled with some increasing trends, additional monitoring was recommended to fill certain data gaps and to provide additional information to improve the water quality conditions of the stormwater lakes and

receiving water bodies. Recommendations for the City of Naples stormwater lake sampling program include pollutant load modeling, additional sampling at lake inflows, and sediment studies. Additional data gathering will provide the necessary information to propose water quality improvement projects to benefit stormwater lakes and downstream waterbodies. Water quality improvement projects could include low impact development projects to improve water quality within the lake watersheds, sediment inactivation to mitigate the internal cycling load of nutrients, and outreach (e.g., fertilizer education).

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1.	Background	4
1.2.	Watershed Setting	6
1	.2.1. Surrounding Land Use	6
1	.2.2. Downstream Waterbodies	10
2.0	METHODOLOGY	
2.1.	Water Quality Data Collection and Processing	14
2.2.	Summary of Water Quality Data	18
2.3.		
2.4.	Trend Analysis	18
2.5.	5	
2.6.	· · · · · · · · · · · · · · · · · · ·	
2.7.		
	.7.1. Potential Impacts to Downstream Waters	
	.7.2. Potential Impacts to Lake Health	
2.8.	- 1	
3.0	RESULTS	
3.1.		
3.2.		
3.3.		
3.4.		
3.5.		
3.6.	5	
3.7.		
-	.7.1. Potential Impacts to Downstream Waters	
-	.7.2. Potential Impacts to Lake Health	
3.8.	- 1	
4.0	SUMMARY	
5.0	RECOMMENDATIONS	
5.1.		
5.2.		
-	.2.1. Structural BMPs	
-	.2.2. Nonstructural BMPs	
6.0	REFERENCES	76

LIST OF APPENDICES

Appendix A – Water Quality Periods of Record for Naples Stormwater Stations Appendix B – Water Quality Summary Statistics for Naples Stormwater Stations Appendix C – Water Quality Correlations for Naples Stormwater Stations

LIST OF FIGURES

Figure 1-1. October 2020-September 2021 Stormwater Lake and Pump Station Outfall Sampling Locations
Figure 1-2. City of Naples Stormwater Lakes Inventory (Note: inventory includes stormwater lakes that do not receive public drainage)
Figure 1-3. City of Naples Land Use (FLUCCS Level 2)
Figure 1-4. City of Naples Stormwater Lakes and Downstream Receiving Waterbodies
Figure 2-1. City of Naples SCADA and NOAA Rain Gauge Locations
Figure 3-1. Total annual rainfall (bars) and long-term average (1942 through 2020, indicated by red line) rainfall from station USW000012897
Figure 3-2. City of Naples Stormwater SCADA Daily Precipitation Totals (October 2020-September 2021)
Figure 3-3. Chlorophyll-a Box Plots by Sampling Location, Available Period of Record. (Note: Included in
box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)
Figure 3-4. Copper Box Plots by Sampling Location, Available Period of Record (Note: Included in box plot
are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)
Figure 3-5. E. coli Box Plots by Sampling Location, Available Period of Record
Figure 3-6. Enterococci Box Plots by Sampling Location, Available Period of Record (Note: Included in box
plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)
Figure 3-7. Total Nitrogen Box Plots by Sampling Location, Available Period of Record (Note: Included in
box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)
Figure 3-8. Ammonia Box Plots by Sampling Location, Available Period of Record (Note: Included in box
plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)
Figure 3-9. Total Kjeldahl Nitrogen Box Plots by Sampling Location, Available Period of Record (Note:
Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)
Figure 3-10. Nitrate and Nitrite Box Plots by Sampling Location, Available Period of Record (Note: Included
in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)
Figure 3-11. Total Phosphorus Box Plots by Sampling Location, Available Period of Record (Note: Included
in box plot are results from the following stations not included in the current sampling program: 19A-SW,
19A-NC, 19A-NW, 24B)
Figure 3-12. Orthophosphate Box Plots by Sampling Location, Available Period of Record (Note: Included
in box plot are results from the following stations not included in the current sampling program: 19A-SW,
19A-NC, 19A-NW, 24B)
Figure 3-13. Time series plots of total nitrogen and precipitation from October 2020 through September
2021 at lakes that ultimately drain to Moorings Bay (top), Gordon River (middle), or Naples Bay/Gulf of
Mexico (bottom)
Figure 3-14. Time series plots of total phosphorus and precipitation from October 2020 through September
2021 at lakes that ultimately drain to Moorings Bay (top), Gordon River (middle), or Naples Bay/Gulf of
Mexico (bottom)

LIST OF TABLES

Table 1-1. Stormwater lakes and pump stations monitored from October 2020 – September 2021	2
Table 1-2. City of Naples Land Use (All Mapped Areas)	
Table 1-3. City of Naples Land Use (Not Including Surface Waters)	
Table 1-4. Select EMCs for Residential and Commercial Land Uses (FDEP, 2010)	8
Table 1-5. Impairments in Downstream Waterbodies	
Table 1-6. Criteria for Downstream Waterbodies	
Table 2-1. Water Quality Parameters	
Table 2-2. City of Naples SCADA Rainfall Gauges.	
Table 3-1. Chlorophyll-a Period of Record Summary Statistics by Sampling Location	
Table 3-2. Copper Period of Record Summary Statistics by Sampling Location	
Table 3-3. E. coli Period of Record Summary Statistics by Sampling Location	
Table 3-4. Enterococci Period of Record Summary Statistics by Sampling Location	32
Table 3-5. Total Nitrogen Period of Record Summary Statistics by Sampling Location	34
Table 3-6. Ammonia Period of Record Summary Statistics by Sampling Location	36
Table 3-7. Total Kjeldahl Nitrogen Period of Record Summary Statistics by Sampling Location	38
Table 3-8. Nitrate and Nitrite Period of Record Summary Statistics by Sampling Location	40
Table 3-9. Total Phosphorus Period of Record Summary Statistics by Sampling Location	
Table 3-10. Orthophosphate Period of Record Summary Statistics by Sampling Location	
Table 3-11. Significant trends in copper and nutrient parameters identified by Mann-Kendall trend	
Table 3-12. Significant trends in Enterococci and Fecal Coliform by Mann-Kendall trend tests	
Table 3-13. Waterbodies with significant increasing trends in maximum annual Chl-a concentrations	
Table 3-14. Statistically Significant Water Quality Correlations for Naples Stormwater Stations, Oct	
2020 – September 2021	
Table 3-15. Long-term period of record percent of the number of samples not meeting the downstr criteria	
Table 3-16. Percent of number of samples (12 samples total, October 2020-September 2021 POR)	
meeting the downstream criteria Table 3-17. Waterbodies organized by highest algal abundance	
Table 3-17. Waterbodies organized by highest algal abundance	
September 2021	
Table 3-19. Number and Percent of waterbodies exceeding Copper Criteria between	
Table 3-19: Number and Percent of waterbodies exceeding Copper Criteria between	
from October 2020 to September 2021	
Table 4-1. Summary of nutrients, Chl-a, Cu and Enterococci in Stormwater Lakes Discharging to the Gold	
River, which is impaired (currently or in draft) for TN, TP, Chl-a, Cu, and Enterococci (as indicated	
highlighting)	-
Table 4-2. Summary of nutrients, Chl-a, Cu and Enterococci in Stormwater Lakes Discharging to the Gu	
Mexico	
Table 4-3. Summary of nutrients, Chl-a, Cu and Enterococci in Stormwater Lakes Discharging to Naples	
which is impaired (currently or in draft) for Chl-a, Cu, and Enterococci.	
Table 4-4. Summary of nutrients, Chl-a, Cu and Enterococci in Stormwater Lakes Discharging to Moor	
Bay, which is impaired (currently or in draft) for TN and TP (as indicated by highlighting).	71

LIST OF ACRONYMS AND ABBREVIATIONS

AGM	annual geometric mean
BAM	annual geometric mean
BMP	Bio-Sorption Activated Media
Chl-a	Best Management Practice
	chlorophyll-a
City	City of Naples
Cu	copper
DO	dissolved oxygen
DOC	dissolved organic carbon
E. coli	Escherichia coli
EMC	Event Mean Concentration
ENTERO	Enterococci
FDEP	Florida Department of Environmental Protection
FDOT	Florida Department of Transportation
FLUCCS	Florida Land Use, Cover and Forms Classification
FY	Fiscal Year
GIS	geographic information system
LID	Low impact development
MDL	method detection limit
µg/L	micrograms per liter
mg/L	milligrams per liter
МК	Mann-Kendall
ml	milliliter
Ν	nitrogen
NELAP	National Laboratory Accreditation Program
NH4	ammonia nitrogen
NOAA	National Oceanic and Atmospheric Administration
NOx	Nitrate + Nitrite Nitrogen
OP	Orthophosphate
Р	phosphorus
PCA	Principal Components Analyses
PCU	Platinum cobalt units
POR	Period of record
p-value	probability value
ROW	right-of-way
SCADA	Supervisory Control and Data Acquisition
SFWMD	South Florida Water Management District
SMK	Seasonal Mann-Kendall
SOP	Standard Operating Procedures
TDML	total maximum daily load
TKN	total Kjeldahl nitrogen
TN	total nitrogen
TOC	total organic carbon
ТР	total phosphorus
TSS	
100	total suspended solids

WBID Water Body Identification Number

Wood Wood Environment & Infrastructure Solutions, Inc.

1.0 INTRODUCTION

Wood Environment & Infrastructure Solutions, Inc. (Wood) was contracted by the City of Naples (City) to conduct water quality sampling and analysis of the stormwater lakes (ponds) receiving public drainage and the City's pump stations and to prepare an annual report to summarize and interpret the results. The City has a robust stormwater lake sampling program that includes collection of quarterly and monthly water quality data as far back as 2014 for 15 of the lakes within its inventory, including: Devils Lake, Swan Lake, Colonnade Lake, Lake Suzanne, Mandarin Lake, South Lake, Alligator Lake, East Lake, Lantern Lake, Sun Lake Terrace, Fleischmann Lake, Forest Lake, Lake Manor, Half Moon Lake (though not part of the current sampling program and does not receive public drainage), and NCH Lake (does not receive public drainage, samples collected for hospital). The stormwater lakes are a key component in the stormwater system of the City of Naples. These lakes receive stormwater, or rainfall runoff, from surrounding lands before discharging water to downstream receiving waterbodies. When properly maintained, stormwater lakes can provide water quality treatment beneficial to downstream waterbodies and flood control beneficial to the surrounding watershed. The data collected in the sampling program provides for valuable insight into the water quality within the lakes and potential impacts on receiving waterbodies.

This report summarizes the water quality monitoring of the City's stormwater lakes and pump stations through September 2021 (**Task 1.2** – Sample Collection and Laboratory Analysis) and the work completed under **Task 1.3** – Data Analysis, Interpretation, and Reporting. For **Task 1.2**, Wood collected samples at the outflows of 22 stormwater lakes and three pump stations on a monthly frequency for one year (from October 2020 through September 2021) and provided monthly data deliverables. Location information for sampled stormwater lakes and pump stations are presented in **Figure 1-1**, and additional sampling location information is presented in **Table 1-1**. The sample collection schedule was coordinated according to the City's Naples Bay water quality monitoring plan.

This report is being prepared as part of **Task 1.3** and includes an assessment of the water quality data collected from 2020-2021 and data extending back to 2014 to identify trends, potential impairment risks to downstream waterbodies, and to document noteworthy water quality issues within the stormwater lakes. **Section 1** of this report includes information on the land use within the City of Naples and the watersheds of the receiving waterbodies for the City's stormwater lakes. An overview of the water quality assessment statistical analysis methodologies is provided in **Section 2**, and the results of the analyses are summarized in **Section 3**. A summary of select results is provided in **Section 4**. Recommendations for additional study and water quality improvement projects are summarized in **Section 5**.

Lake or Pump Station Name	Lake or Pump Station Number	Station ID	Drainage Basin (Rain Gauge)
Lake Diana	17	17B	
NCH Lake	26	26B	
Forest Lake	20	20B	
Fleischmann Lake (15th Avenue N Lake-WTP)	19	19B	Gordon River
Mandarin Lake	6	6B	18-A-12 (#8)
Lake Manor	22	22B	
Thurner	16	16B	
Willow	21	21B	
Sun Lake Terrace	15	15B	
North Lake	8	8B	Culf of Mauina
South Lake	9	9B	Gulf of Mexico
Alligator Lake	10	10B	31-A-12 (#7)
Lake Suzanne	5	5B	
Swan Lake	2	2B	
Colonnade Lake	3	3B	Moorings Bay
Lowdermilk	23	23B	109-A-12 (#10)
Hidden	4	4B	
Devils Lake	1	1SE-B	
Lantern Lake	14	14B	
Lake 13	13	13B	Naples Bay
East Lake	31	11B	92-C-12 (#4)
Spring Lake	11	11C	
Port Royal Pump	14	14-Pump	
Cove Pump	11	11-Pump	Pump Stations
Public Works Pump	PW	PW-Pump	

Table 1-1. Stormwater lakes and pump stations monitored from October 2020 – September 2021

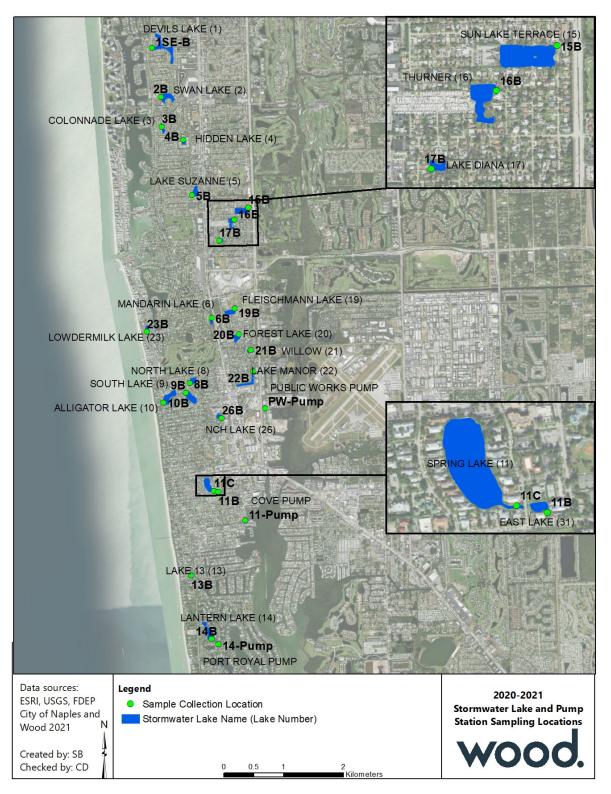


Figure 1-1. October 2020-September 2021 Stormwater Lake and Pump Station Outfall Sampling Locations

1.1. Background

There are 28 stormwater lakes on the City of Naples stormwater lake inventory (**Figure 1-2**, Wood, 2019). Of these lakes, five are public lakes (public defined as fee simple ownership or Plat dedication and historical use): Mandarin Lake, Fleischmann Lake, Lake Manor, Lowdermilk Lake, and East Lake; these lakes were monitored during the 2020-2021 sampling. The remaining lakes are primarily privately owned, though ownership is undetermined at five lakes (Spring Lake, North Lake, South Lake, Alligator Lake, and Lake Diana). The 22 lakes monitored during 2020-2021 are listed in **Table 1-1**; the lakes not monitored in 2020-2021, but on the City's inventory, include the following privately owned lakes: Halfmoon Lake (Lake 24), Lake 7, Lake 12, Lake 25, Lake 27, and Lake 28. Note that because these privately owned lakes do not receive public drainage, the City has made a concerted effort in recent years to focus sampling efforts to other lakes that receive public drainage.

The City of Naples stormwater lakes are manmade features and were excavated to provide upland fill for the surrounding homes as well as intercept pollutants through the collection and retention of stormwater runoff. Therefore, they are not considered "Waters of the State" by the Florida Department of Environmental Protection (FDEP) and are therefore not subject to regulatory water quality criteria.

In recent years (including 2020-2021), the City's stormwater lakes monitoring program included only samples at the lake outfalls. Previous monitoring efforts included monitoring at both the inflows and outflows of the lakes; influent monitoring has not been conducted since February 2014 (Amec, 2014). Monitoring both the inflow and outflow requires more effort and can be costly but allows for information about in-lake processes (e.g., pollutant removal efficiency or internal loading potential). Additional lake data previously collected, though not updated recently, included data on lake residence time, potential for stratification, sediment accumulation, mass loading of pollutants per lake volume, and absolute mass of pollutants discharged (Amec, 2012; Amec, 2014). Such data requires additional effort to collect, analyze, and interpret. The City's current stormwater lake monitoring program includes sample collection at outfalls only and is focused on maximizing the monitoring frequency (monthly), analytical parameters (16 analytical parameters plus field measurements) and number of monitoring locations (22 lakes and three pump stations).

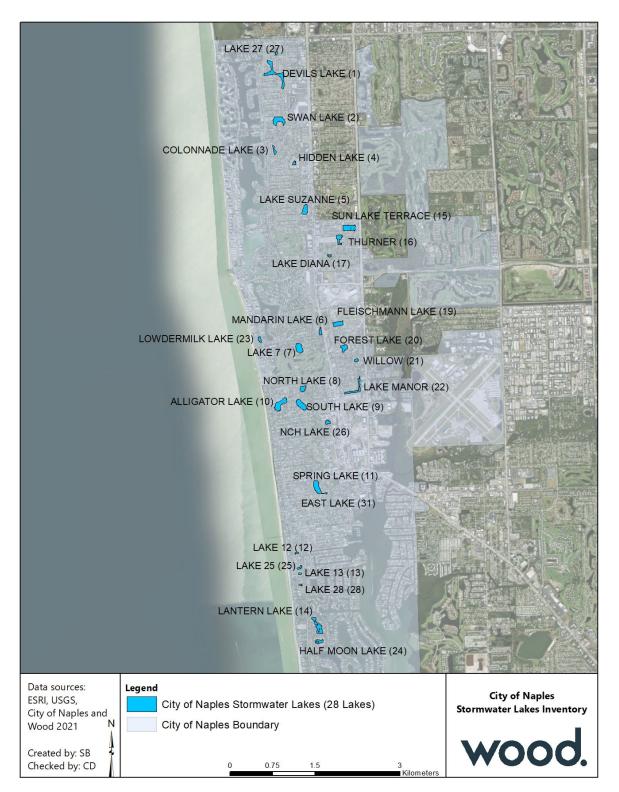


Figure 1-2. City of Naples Stormwater Lakes Inventory (Note: inventory includes stormwater lakes that do not receive public drainage)

1.2. Watershed Setting

Rainfall runoff is the primary source of water to the stormwater lakes and the water quality of the runoff is largely dependent on the land use in the watershed surrounding the lake. Information about the land use within the City of Naples, land use implications for stormwater quality, and the receiving waterbodies for City stormwater lakes is included below. This land use analysis provides general information about the runoff characteristics in the City and is also a key component of pollutant load modeling, one of the recommendations described in **Section 5.0**. Accurate basin information is necessary for pollutant load modeling and the City is currently conducting basin assessments in select areas which will provide useful information for pollutant load modeling.

1.2.1. Surrounding Land Use

The City of Naples stormwater lakes receive stormwater from both public and private lands within the City of Naples (Wood, 2019). The land use within the City, using the Florida Land Use, Cover and Forms Classification (FLUCCS; FDOT, 1999) with land use data from 2017 – 2019 is included in **Figure 1-3**. The acreages and percent cover of the land uses present within the City are included in **Table 1-2** (showing all land uses, including surface waters) and **Table 1-3** (showing the land uses not including surface waters); both tables are sorted to show the largest areas at the top of the table. The land use acreages and percentages are based on a geographic information system (GIS) analysis of the 2017 – 2019 land use data compiled by the South Florida Water Management District (SFWMD) and downloaded from the FDEP Geospatial Open Data website¹.

The primary developed land uses within the City of Naples are medium density residential, high density residential, recreational, and commercial and services. These land uses are an important consideration because they illustrate the general conditions within the City and because different land use types can generate different concentrations of pollutants and loads to receiving waterbodies. When modeling the pollutant loads from different land uses, an Event Mean Concentration (EMC) is typically used to represent the average concentration of a pollutant in runoff from a specific land use. The EMCs for the medium and high density residential and commercial land uses are included in **Table 1-4**; the EMCs in this table are from the FDEP's Draft Environmental Resource Permit Stormwater Quality Applicant's Handbook (FDEP, 2010) and are based on literature-based runoff characteristics from studies throughout Florida. In contrast to the developed land uses in Table 1-4, the EMCs are generally lower from undeveloped or more natural lands. For example, the average EMCs for total nitrogen (TN) and total phosphorus (TP) for undeveloped and forested areas are 1.15 mg/L and 0.055 mg/L, respectively (FDEP, 2007) and the TN and TP EMCs for medium density residential land use are 1.85 mg/L and 0.31 mg/L, respectively (FDEP, 2010). Recreational land use also comprises a high percentage of land within the City, with the majority (approximately 800 acres) as golf courses. Depending on how the golf course is managed, the runoff characteristics at more heavily fertilized courses can be similar to medium density residential (FDEP, 2007). At golf courses that use less fertilizer, runoff nutrient concentrations may be lower, while reclaimed water use can contribute to nutrients in golf course runoff.

It is important to note that the land uses contributing to each of the City's lakes will differ according to the land uses present within the lake's sub-basin. Although the City is dominated by residential lands, lakes will differ in their individual land uses, for example, some lakes may receive stormwater from primarily

¹FDEP Geospatial Open Data FLUCCS Data, available at: https://geodata.dep.state.fl.us/datasets/FDEP::statewide-land-use-land-cover/about.

undeveloped areas, or primarily from recreational areas. In addition, the EMCs from FDEP (2010) are useful for comparison across different land uses but do not represent site-specific conditions. Site-specific EMCs can be developed using stormwater sampling.

The contributing land uses can provide managers information on the primary runoff characteristics and potential pollutant sources within the watershed and the types of water quality improvement projects that may be implemented. For example, the City has large areas of residential and golf course areas, and the application of fertilizer has been recognized as an important source of nitrogen (N) and phosphorus (P) pollution in urban areas, via stormwater runoff (Souto et al., 2019; Yang and Toor, 2016; Yang and Toor, 2017; Krimsky et al., 2021). The City of Naples has already implemented a fertilizer ordinance² and developed web-based outreach materials including a fertilizer calculator that can assist residents, along with brochures emphasizing how everyone can do their part to minimize fertilizer impacts to surrounding waterways. Landscape companies are also required to complete the Green Industries Best Management Practices certification provided through the State—an initiative that was started within the City of Naples' and grew statewide based on these efforts.

FLUCCS Code Level 2	FLUCCS Description	Acres	Percent of Total
1200	Residential Medium Density	2,748.70	29%
5100	Streams and Waterways	1,533.86	16%
1300	Residential High Density	1,043.68	11%
1800	Recreational	1,020.96	11%
1400	Commercial and Services	838.38	9%
8100	Transportation	712.63	7%
6100	Wetland Hardwood Forests	669.34	7%
5300	Reservoirs	254.32	3%
1100	Residential Low Density	182.33	2%
1700	Institutional	171.84	2%
3200	Shrub and Brushland	96.03	1%
1900	Open Land	80.21	1%
4100	Upland Coniferous Forests	73.15	1%
4300	Upland Mixed Forests	52.57	1%
5700	Oceans Seas and Gulfs	45.74	0.5%
8300	Utilities	29.89	0.3%
4200	Upland Hardwood Forests	23.96	0.2%
6300	Wetland Forested Mixed	18.27	0.2%
6400	Vegetated Non-Forested Wetlands	12.67	0.1%
5400	Bays and Estuaries	9.74	0.1%
6200	Wetland Coniferous Forests	8.00	0.1%
	9,626.24	100%	

² Fertilizer Use and Maintenance of Landscapes, City of Naples, available at: https://www.naplesgov.com/fertilizer, accessed 2021-07-23.

FLUCCS Code Level 2	FLUCCS Description	Acres	Percent of Total
1200	Residential Medium Density	2,748.70	35%
1300	Residential High Density	1,043.68	13%
1800	Recreational	1,020.96	13%
1400	Commercial and Services	838.38	11%
8100	Transportation	712.63	9%
6100	Wetland Hardwood Forests	669.34	9%
1100	Residential Low Density	182.33	2%
1700	Institutional	171.84	2%
3200	Shrub and Brushland	96.03	1%
1900	Open Land	80.21	1%
4100	Upland Coniferous Forests	73.15	1%
4300	Upland Mixed Forests	52.57	1%
8300	Utilities	29.89	0%
4200	Upland Hardwood Forests	23.96	0%
6300	Wetland Forested Mixed	18.27	0%
6400	Vegetated Non-Forested Wetlands	12.67	0%
6200	Wetland Coniferous Forests	8.00	0%
	7,782.59	100%	

Table 1-3. City of Naples Land Use (Not Including Surface Waters)

 Table 1-4.
 Select EMCs for Residential and Commercial Land Uses (FDEP, 2010)

FLUCCS Code	Land Use	EMC (mg/L)				
Level 2		TN	ТР	TSS	Cu	
	Residential Medium Density (Single-					
1200	Family)	1.85	0.31	37.5	0.016	
1300	Residential High Density (Multi-Family)	1.91	0.48	77.8	0.009	
	Commercial (range represents low and					
1400	high intensity)	0.93 - 2.48	0.16 - 0.23	57.5 - 69.7	0.015 - 0.018	

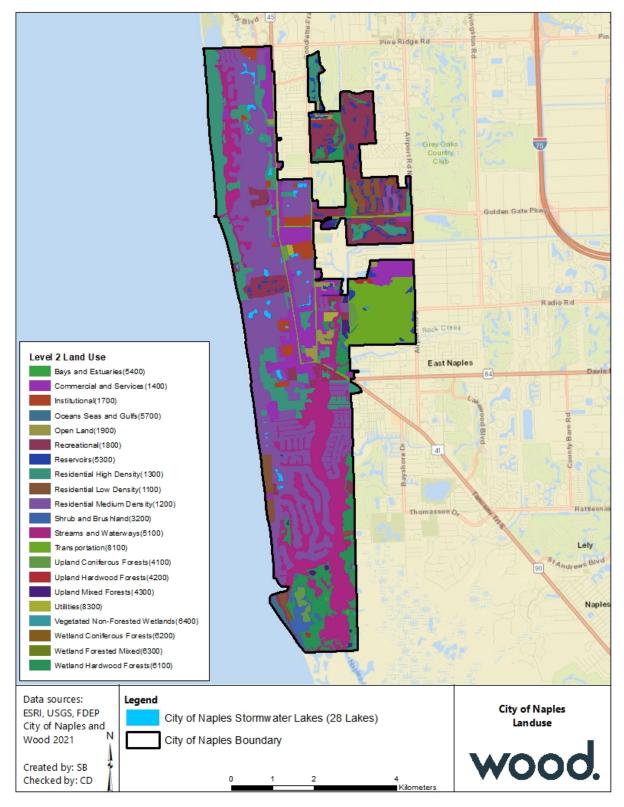


Figure 1-3. City of Naples Land Use (FLUCCS Level 2)

1.2.2. Downstream Waterbodies

The stormwater lakes (**Table 1-1**) discharge primarily to the following natural receiving waterbodies: Gordon River, Naples Bay, and Moorings Bay (**Figure 1-4**; Cardno, 2020). Three lakes also discharge directly to the Gulf of Mexico. The FDEP waterbody class, FDEP Draft (FDEP 2021a) and FDEP Verified (FDEP 2021b) impairment status of Gordon River, Naples Bay, and Moorings Bay are included below and summarized in **Table 1-5**:

- Gordon River: The Gordon River is divided into two Water Body Identification (WBID) areas: the Extension (the upstream, freshwater portion WBID 3278K) and the Marine Segment (WBID 3278R5). The Gordon River (marine) is a Class III waterbody, meaning it should support fish consumption, recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife. The marine segment is on the Verified Impaired List (FDEP 2021b) for copper (Cu), iron, dissolved oxygen (DO), *Enterococci*, chlorophyll-a (Chl-a), TN, and TP. According to the Draft Impaired List (FDEP 2021a), the marine segment is no longer impaired for Cu. The freshwater segment is on the Verified Impaired List for *Escherichia coli* (*E. coli*). As the farther downstream segment, this report will primarily reference the marine segment.
- Naples Bay: Naples Bay (WBID 3278R4) is a Class II waterbody, meaning it is a coastal water with a
 designated use of shellfish propagation or harvesting. Historically, this waterbody, at the time of
 designation, likely supported shellfish harvesting. Naples Bay is currently on the Verified Impaired
 List (FDEP 2021b) for Cu, iron, fecal coliform, and Chl-a. According to the Draft Impaired List (FDEP
 2021a), the waterbody is also impaired for *Enterococci*.
- Moorings Bay: Moorings Bay (WBID 3278Q2) is another Class II waterbody, and is currently on the Verified Impaired List (FDEP 2021b) for TP. According to the Draft Impaired List (FDEP 2021a), the waterbody is also impaired for TN.

The waterbody Class is significant because, as described below, there are specific regulatory water quality criteria according to the waterbody Class. The FDEP uses statewide water quality criteria to conduct impairment assessments and identify waterbodies with concentrations of pollutants that are exceeding regulatory criteria. These regulatory criteria are included in **Table 1-6**. The impairments are significant because when a waterbody is listed as impaired and if a Total Maximum Daily Load (TMDL) is established, the entities (or municipalities) contributing to the impairment are responsible for implementing pollutant load reduction projects.

Waterbody	Waterbody WBID Parameter		Current Status ¹	Draft Status ²	
		Copper	Impaired	Delist (Not Impaired)	
		Dissolved Oxygen (Percent Saturation)	Impaired	Impaired	
Gordon River		Enterococci	Impaired	Impaired	
(Marine	3278R5	Nutrients (Chlorophyll-a)	Impaired	Impaired	
Segment)		Nutrients (Total Nitrogen)	Impaired	Impaired	
		Nutrients (Total Phosphorus) Impaired		Impaired	
		Iron Impaired		Impaired	
Gulf of Mexico (Collier County)	8062				
Moorings Bay	227000	Nutrients (Total Nitrogen)	Not Impaired	List (Impaired)	
System	3278Q2	Nutrients (Total Phosphorus)	Impaired	Impaired	
		Copper	Impaired	Impaired	
Naples Bay		Enterococci	Not Impaired	List (Impaired)	
(Coastal	3278R4	Fecal Coliform	Impaired	Impaired	
Segment)		Iron	Impaired	Impaired	
		Nutrients (Chlorophyll-a)	Impaired	Impaired	

Table 1-5. Impairments in Downstream Waterbodies

¹- Status on FDEP's "Verified Impaired List" (FDEP 2021b).

² – Status on FDEP's "Biennial Assessment 2020-2022 Drafts Lists" (FDEP 2021a)

Downstream Waterbody	Parameter	Criteria	unit	Individual Samples / AGMs ¹
	Copper	3.7	µg/L	Individual Samples
	Enterococci	130	#/100mL	Individual Samples
Gordon River	Dissolved Oxygen Saturation	42	%	Individual Samples
	Chlorophyll-a	4.3	µg/L	AGM
	Total Nitrogen	0.57	mg/L	AGM
	Total Phosphorus	0.045	mg/L	AGM
	Copper	3.7	µg/L	Individual Samples
	Enterococci	130	#/100mL	Individual Samples
Gulf of Mexico	Dissolved Oxygen Saturation	42	%	Individual Samples
	Chlorophyll-a	3.1	µg/L	AGM
	Total Nitrogen	0.25	mg/L	AGM
	Total Phosphorus	0.032	mg/L	AGM
	Copper	3.7	µg/L	Individual Samples
	Enterococci	130	#/100mL	Individual Samples
Moorings Bay	Dissolved Oxygen Saturation	42	%	Individual Samples
5 5	Chlorophyll-a	8.1	µg/L	AGM
	Total Nitrogen	0.85	mg/L	Individual Samples
	Total Phosphorus	0.04	mg/L	Individual Samples
	Copper	3.7	µg/L	Individual Samples
	Enterococci	130	#/100mL	Individual Samples
Naples Bay	Dissolved Oxygen Saturation	42	%	Individual Samples
	Chlorophyll-a	4.3	µg/L	AGM
	Total Nitrogen	0.57	mg/L	AGM
	Total Phosphorus	0.045	mg/L	AGM

Table 1-6. Criteria for Downstream Waterbodies

¹-AGM = Annual Geometric Mean

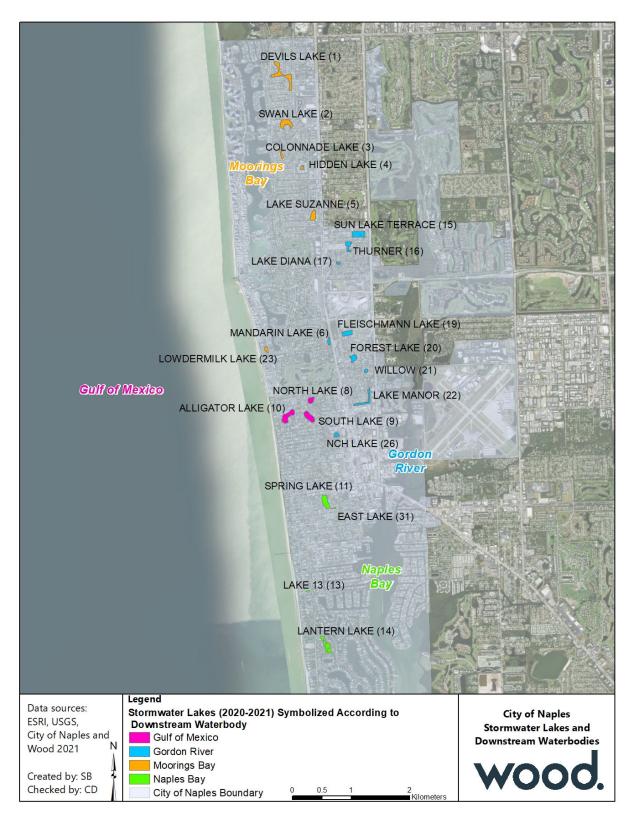


Figure 1-4. City of Naples Stormwater Lakes and Downstream Receiving Waterbodies

2.0 METHODOLOGY

Exploratory statistical data analyses were conducted to gain an understanding of the monitored water quality parameters and to assess relationships between water quality parameters (e.g., nutrients, chlorophyll-a, etc.) and among different lakes within the stormwater system. Additionally, monthly and annual loading of total nitrogen and total phosphorus from the City's pump stations were calculated using concentration and flow data provided by the City.

Statistical analyses of the stormwater lake data were conducted on two datasets: (1) the water quality data collected by Wood during the 2020 – 2021 monitoring program, and (2) the extended dataset provided by the City of Naples for the stormwater lake monitoring program, which includes water quality data beginning in December 2014. Briefly, water quality samples are collected by filling laboratory-supplied bottles, preserved as needed, with surface water at the sample location. These samples are delivered on ice to a National Environmental Laboratory Accreditation Program (NELAP) certified laboratory for chemical analysis within the method required holding times. Calibrated handheld meters were used to measure temperature, DO, conductivity, salinity, and pH at the sample location at the time of sample collection. All sampling, field measurements, and shipping followed FDEP Standard Operating Procedures (SOP)s.

2.1. Water Quality Data Collection and Processing

Wood conducted stormwater lake and pump station water quality monitoring from October 2020 through September 2021. Water quality data collected by Wood (October 2020 through September 2021) and data provided by the City of Naples (from 2014 to September 2020) were combined into one database. The parameters included in this database are listed in **Table 2-1**. **Appendix A** provides a complete visualization of the periods of record (POR) for select water quality parameters for each sample station in the database. The POR is the length of time for which water quality is available for a given lake. The POR can differ among lakes as lakes are added or removed from the sampling program. Data were reviewed for outliers and measurement units were checked for consistency and, if different, standardized to the same scale. Data qualifiers assigned by the analytical laboratory were reviewed; results reported at below the method detection limit (MDL) that were "U" qualified were adjusted to $\frac{1}{2}$ of the MDL for statistical analysis. This standard approach of adjusting "U" data by $\frac{1}{2}$ is consistent with FDEP methodology. Because bacterial data ranged over several orders of magnitude, these data were $\log 10(x+1)$ transformed for some graphical presentations.

Parameter	Water Quality Significance				
Laboratory Analysis					
Total Nitrogen (TN)	Contributes to algal growth				
Total Kjeldahl Nitrogen (TKN)	Organic and ammonium fractions of total nitrogen				
Nitrate + Nitrite Nitrogen (NOx)	Inorganic component of TN; can indicate fertilizer or waste sources				
Ammonia Nitrogen (NH4)	Additional inorganic component of TN				
Total Phosphorus (TP)	Contributes to algal growth				
Orthophosphate (OP)	Dissolved inorganic fraction of TP				
Chlorophyll a (Chl-a)	Measure of algae biomass				
Copper (Cu)	Can be toxic to aquatic organisms				
Total Hardness	Amount of calcium and magnesium; buffering capacity of water, and used in calculating copper criteria				
E. coli	Indicator of potential fecal contamination				
Enterococci	Indicator of potential fecal contamination				
Fecal coliform ^a	Indicator of potential fecal contamination				
Total Organic Carbon (TOC)	Measure of organic material				
Dissolved Organic Carbon (DOC)	Measure of dissolved organic material				
Color	Indicator of water clarity				
Turbidity	Indicator of water clarity				
Total Suspended Solids (TSS)	Indicator of water clarity				
Field-Measured					
Dissolved Oxygen (DO)	Essential to aquatic life; often limiting in water.				
рН	Measure of how acidic or basic water is.				
Specific Conductance	Ability of water to conduct electricity; indicator of amount of dissolved substances in water.				
Salinity	Measure of the amount of dissolved salts in water.				
Temperature	Measured in field.				

Table 2-1. Water Quality Parameters

Note: ^a: Fecal coliform was not included in the 2020-2021 sampling program because it is no longer used by FDEP as a regulatory criterion; in freshwater Class III waterbodies, the current regulated bacteria is *E. coli*. It has been included in the 2021-2022 sampling program.

Rainfall data were obtained from two sources. For use in analyses on the full POR (2014-2021), rainfall data from Naples, Florida were obtained from the Climate Data Online Portal from the \$\text{National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information. The daily rainfall data were obtained from station USW000012897 (Latitude: 26.155°, Longitude: -81.7752°). Rainfall data used in analysis of the 2020-2021 dataset were provided by the City of Naples from the City's Supervisory Control and Data Acquisition (SCADA) rainfall monitoring network. The SCADA network includes 10 rain gauges throughout the City that provide daily rainfall totals. The rain gauges are listed in **Table 2-2. Figure 2-1** shows the location of the City's SCADA gauges and the NOAA rainfall station.

Rainfall Gauge	Station ID	Location		
39-A-12 (#1)	39	4225 Gordon Dr.		
109-A-12 (#10)	109	Seagate School		
93-C-12 (#2)	93	PR Station		
35-A-12 (#3)	35	Broad & Gulfshore		
92-C-12 (#4)	92	Cove Station		
61-A-12 (#5)	61	Sandpiper		
130-C-12 (#6)	130	PW Station		
31-A-12 (#7)	31	1578 Gulfshore N.		
18-A-12 (#8)	18	28th Ave & 12th		
23-A-12 (#9)	23	3377 Gulfshore		

Table 2-2. City of Naples SCADA Rainfall Gauges.

Statistical testing revealed that the rainfall totals among the stations were not significantly different. Therefore, a central rain gauge was assigned to each receiving waterbody and used in the statistical significance testing for the sampling stations upstream of the receiving waterbody (**Table 1-1**).

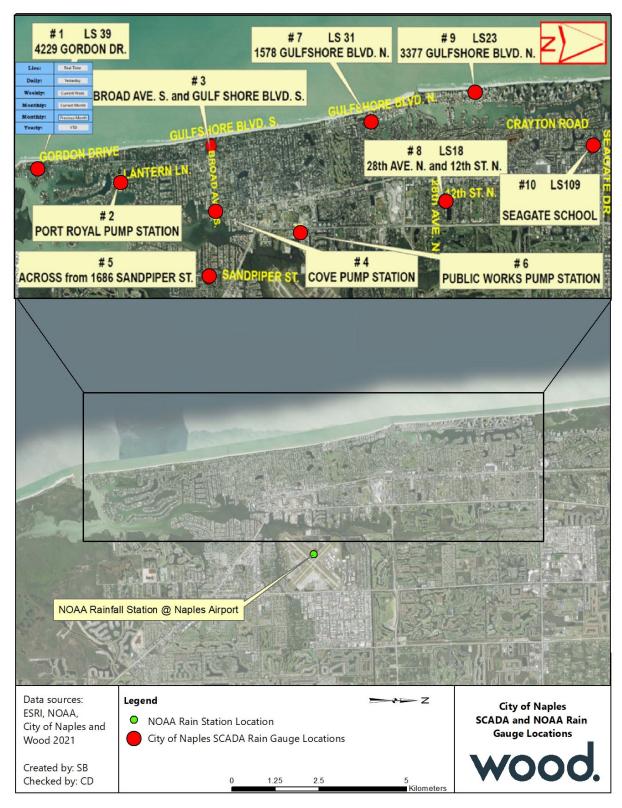


Figure 2-1. City of Naples SCADA and NOAA Rain Gauge Locations

2.2. Summary of Water Quality Data

Summary statistics for each water quality parameter were calculated for all 2020-2021 sampled lakes and pump stations and include the average, median, minimum, maximum, and standard deviation values, as well as for the POR and number of observations (count). Summary statistics for Cu, nutrient parameters, Chl-a and bacteria parameters are included in **Section 3.2** and summary statistics for all other water quality parameters are included in **Appendix B**. Additionally, a preliminary comparison of select water quality parameters among lakes was conducted using box plots. Parameters selected for box plot comparisons were Cu, Chl-a, nutrients (TN, NH4, TKN, NOx, TP, OP), and fecal indicator bacteria (*Enterococci, E. coli*, fecal coliform). In the box plots, the middle line represents median, upper and lower lines represent 25th and 75th percentile, and whiskers (straight lines) represent 1.5 x interquartile ranges. Points outside the whiskers are values higher or lower than the 1.5 x interquartile range.

2.3. Watershed Figures

For consistency with previous annual reports and to allow for a temporal comparison, select figures were replicated for TN, TP, Chl-a, *Enterococci*, and Cu for the monitoring period (2020-2021). Three figures were made for each parameter: one figure showing the lakes discharging to Moorings Bay, one showing the lakes discharging to the Gordon River, and one figure showing lakes discharging to Naples Bay and the Gulf of Mexico. Total monthly precipitation was also displayed on the figure using the representative station; for the Naples Bay/Gulf of Mexico figures, the representative Naples Bay precipitation station was used. The analytes selected for these figures are a subset of the analytes regulated in the downstream waterbodies. These figures represent visualizations of the data over time; statistical trend analysis was conducted separately, as described below, including statistical significance testing for changes in parameters over time and correlation with precipitation.

2.4. Trend Analysis

Statistical trend analysis was conducted to assess if concentrations of water quality parameters were significantly increasing or decreasing over time. The non-parametric Mann-Kendall test was used to test for trends. The water quality data were first checked for serial correlation. If there was no evidence of serial correlation then the Mann-Kendall (MK) test was used to test for significant trends. If there was evidence of serial correlation, the data were analyzed using the Seasonal Mann-Kendall (SMK) test. Trends were considered statistically significant at a p-value of less than 0.05, however, it should be noted that ecological effects can occur at levels above and below the 0.05 p-value. In addition to trends of raw data, trends in annual maximum Chl-a were tested to support the investigation into lake health discussed in **Section 2.7.2**.

2.5. Correlation Analysis

While trend analyses assess the changes in individual water quality parameters over time, correlation analysis explores the relationships of water quality parameters to each other. To explore these relationships between water quality parameters, the non-parametric Spearman correlation analysis was employed. Spearman's rho correlations were calculated using the monthly data from the stormwater lakes and pump stations (sampled in 2020-2021). Parameters included in the correlation analysis are listed in **Table 2-1**. Significant results (p < 0.05) were plotted on a correlation matrix using the "rstatix" package from R (Kassambara, 2021). Correlations are used to assess the strength of relationships between parameters. A strong correlation does not imply that an increase (or decrease) in one parameter causes an increase (or

decrease) in another parameter since correlation does not imply causation. It does, however, suggest that the values may be behaving similarly, which warrants further attention.

Correlations were conducted on two datasets: (1) the full POR for stormwater lake data and using the NOAA station rainfall, and (2) the 2020-2021 stormwater lake data and using the City's SCADA rainfall data (see **Table 1-1** for gauge information).

2.6. Multivariate Analyses

A multivariate approach was used to simultaneously explore differences in water quality among the stormwater lakes. The analyses included hierarchical cluster analysis, Principal Components Analysis (PCA) and an ordination plot based on PCA values. These analyses require complete data (i.e., no missing data) for all parameters. The analyses were conducted on two sets of data. The first was for lakes with complete data for the POR from September 2014 through September 2021. This included 16 lakes, with 14 water quality parameters (**Table 2-3**). The second set of analyses included 22 lakes sampled by Wood, from October 2020 through September 2021, with 18 water quality parameters (**Table 2-3**). Different water quality parameters were used in the two datasets because of changes in monitoring and collinearity (further explained in the paragraph below) between parameters that was more evident in the longer-term dataset.

PCA Dataset	Lakes	Parameters		
Full POR (September 2014 through September 2021)	Devils Lake (1SE-B), Swan Lake (2B), Colonnade Lake (3B), Lake Suzanne (5B), Mandarin Lake (6B), South Lake (9B), Alligator Lake (10B), East Lake (11B), Lantern Lake (14B), Lake Terrace (15B), Fleischmann Lake (19B), Forest Lake (20B), Sun Willow (21B), Lake Manor (22B), Lowdermilk (23B), NCH Lake (26B)	pH, TN, temperature, DO (mg/L), turbidity, TSS, Cu, Chl-a, specific conductance, NOx, OP, <i>Enterococci</i> , NH4, and TP		
Wood Sampling Period (October 2020 through September 2021	Devils Lake (1SE-B), Swan Lake (2B), Colonnade Lake (3B), Hidden Lake (4B), Lake Suzanne (5B), Mandarin Lake (6B), North Lake (8B), South Lake (9B), Alligator Lake (10B), East Lake (11B), Spring Lake (11C), Lake 13 (13B), Lantern Lake (14B), Sun Lake Terrace (15B), Thurner (16B), Lake Diana (17B), Fleischmann Lake (19B), Forest Lake (20B), Willow (21B), Lake Manor (22B), Lowdermilk Lake (23B), NCH Lake (26B)	pH, TN, temperature, DO (mg/L), turbidity, TSS, Cu, Chl-a, specific conductance, NOx, OP, <i>Enterococci</i> , NH4, TP, TOC, color, <i>E. coli</i> , and calcium		

Because of the large number (n > 15) of lakes, and sampling events (monthly), Wood averaged the water quality parameters for each lake. This method is recommended with large datasets to discern patterns in the data (Clarke et al., 2014). Next, these data were examined for collinearity, as highly correlated parameters can result in spurious results. Highly correlated results will tend to overfit the model. The assumption is that

the variables are independent. Thus highly correlated parameters affect the interpretation of the model because they undermines the significance of the independent variables. For example, these highly correlated parameters can include expected correlations like precipitation and salinity – with increasing freshwater rainfall, the salinity in the waterbody decreases. Salinity and specific conductance are also highly correlated because both measure the concentration of salts in the water sample. Parameters that were highly correlated (Pearson, r > 0.7) were removed. Distribution plots of the remaining parameters were examined, and data that were not normally distributed were log (x+1) transformed to satisfy the assumptions needed to perform these statistical tests. Next, these data were placed on the same scale (a requirement for this analyses), by normalizing to a mean of 0 and standard deviation of 1. Then, a resemblance matrix was created from these data for each lake and each parameter using Euclidean distances. To test for significant differences in groups of stormwater lakes, Wood used the Euclidean-based matrix to conduct a hierarchical cluster analysis, using group averages, with 999 permutations, and a significance level of 5%. This routine places lakes into groups with most similar water quality and tests for significant differences among these groups. Euclidean distances among parameters and among lakes were also used to conduct the PCA. Principal Component Scores were then used to create a PCA ordination plot to visualize differences among lakes on a 2-dimensional scale. Lakes determined to be significantly different based on the hierarchical clustering were coded different colors on the PCA plot. Vectors representing influential parameters were also plotted to further aid in visualization of the differences among lakes.

2.7. Impairment Assessment

An informal impairment assessment was conducted to identify potential impacts to downstream waterbodies and in-lake health, as described below.

2.7.1. Potential Impacts to Downstream Waters

It is important to note that the FDEP water quality impairment criteria do not apply to stormwater lakes since they are manmade features and are not classified as Waters of the State. Stormwater lakes are designed to receive rainfall runoff containing nutrients and other pollutants and exceedances are expected when comparing the stormwater lakes to downstream criteria which apply to more natural waterbodies that were not designed and constructed to intercept stormwater runoff from developed lands. The comparison to downstream water quality criteria is simply a comparison tool and the downstream water quality criteria do not represent target water quality conditions in stormwater lakes.

The informal impairment assessment was conducted by comparing water quality in stormwater lakes (e.g., individual samples or annual geometric mean [AGM] concentrations) against impairment criteria applicable to downstream waterbodies. The stormwater lakes and the downstream waterbodies are displayed in **Figure 1-4**. The downstream waterbody criteria are described in **Section 1.2.2**; with regulatory criteria included in **Table 1-6**. The percent of the number of samples from the stormwater lakes that exceeded the regulatory criteria for the downstream waterbody was calculated. Since only one month of data was collected in 2014, that year was excluded from parameters evaluated as AGMs. Parameters were selected based on current impairments and data availability.

2.7.2. Potential Impacts to Lake Health

Florida's longer growing season and higher temperatures lead to seasonal fluctuations of benthic and suspended algae, including naturally occurring cyanobacteria in freshwater. These naturally occurring algae can proliferate, or bloom, under certain conditions (including increased nutrients, higher temperatures, and reduced water flow³). In surface waters, Chl-a concentrations are analyzed to measure the amount of algae in the water.

FDEP has established an impairment threshold of 20 μ g/L for Chl-a, measured as an annual geometric mean, for natural lakes with long-term geometric mean color greater than 40 platinum cobalt units (PCU, FDEP 2013).⁴ This value is similar to what Hoyer et al. (2004) found (17 μ g/L as a mean) above which surveyed residents identified substantial reduction in aesthetic enjoyment due to algae levels. As described earlier, the regulatory criteria do not apply to stormwater lakes, and given their position on the landscape and purpose of intercepting pollutants in stormwater runoff, many stormwater lakes have elevated nutrients which can contribute to increased concentrations of algae.

To identify which of the studied waterbodies may have the greatest tendency towards higher algae concentrations, they were ranked based on 1) number of years where AGMs exceeded the 20 μ g/L Chl-a threshold and 2) the maximum Chl-a AGM. Additionally, the maximum recorded Chl-a value was included to identify waterbodies that have experienced higher concentrations of algae. Since only one month of data was collected in 2014, that year was excluded from analysis. For this analysis, the full period of record dataset was used (rather than the dataset encompassing only the October 2021 – September 2021).

Additionally, to identify future management considerations, a dataset of the maximum individual Chl-a values from each lake in each year was constructed. Trend analysis was performed on this dataset following procedures in **Section 2.4**.

Copper-based algaecides are used to control algae in stormwater lakes and preserve aesthetics (Willis and Bishop 2016). However, this can lead to cyclical water quality management issues including reductions in benthic DO as dead algae are consumed by bacteria and additional blooms due to the release of nutrients from algal decomposition. Copper can also enter stormwater lakes from other sources including fertilizers, fungicides, and automobile brake pads (Lifset et al. 2012). Copper entering stormwater lakes can accumulate in sediments, aquatic plants and fish (Campbell 1994, Rader et al. 2019, Lusk and Chapman 2020).

Although copper is a naturally occurring micronutrient, elevated concentrations can be toxic to aquatic taxa due to chronic (long-term) and acute (short-term) exposure (EPA, 2007). Toxicity of copper is determined by its bioavailability, which is affected by several factors including dissolved organic carbon (DOC), hardness, temperature, and pH (Flemming and Trevors 1989, EPA 2007, Craven et al. 2012, Wagner et al. 2017).

Florida's water quality criteria for copper were developed by the EPA using toxicity studies. For freshwater, the copper criterion is based on hardness and can vary from 2.85 μ g/L when hardness \leq 25 mg/L CaCO3 to 30.50 μ g/L when hardness \geq 400 mg/L CaCO3. For marine waters, the copper criterion is 3.7 μ g/L. The cutoff

³ FDEP's Freshwater Algal Blooms Frequently Asked Questions, available at:

https://floridadep.gov/sites/default/files/freshwater-algal-bloom-faqs_2019.pdf, accessed 2021-12-22.

⁴ The Chl-a criteria changes based on the lake color. The criteria of 20 ug/L is applicable to freshwater lakes with long term geometric mean color of 40 PCU. Although the Chl-a criteria do not apply to stormwater lakes, based on the stormwater lake color (Appendix A), the criteria of 20 ug/L is the comparable freshwater lake criteria comparison.

between marine and freshwater is based on specific conductance where values < 4,580 µmhos/cm are freshwater and \geq 4,580 µmhos/cm are marine. And as described earlier, these regulatory criteria do not apply to stormwater lakes, which are designed to intercept stormwater runoff containing pollutants. The comparisons of stormwater lake water quality data to FDEP natural waterbody criteria is a comparison tool and does not represent goal or target conditions for stormwater lakes.

Copper concentrations in samples collected over the past year were compared to the copper criteria based on specific conductance and (if applicable) hardness values. The number of exceedances of the copper criteria were then used to calculate percent exceedances for each waterbody. Additionally, results were evaluated by month to evaluate if there were seasonal changes in copper exceedances.

2.8. Pump Station Nutrient Loading Estimates

Estimates of monthly and annual loading of TN and TP from the City's pump stations were calculated using pump station sample concentrations and pump operation data provided by the City. The pump operation data provided by the City included total monthly pump run times and maximum pumping capacities (in gallons per minute) for each pump. Pump operation data was used to estimate a potential water volume for each pump. These volumes were multiplied by monthly concentrations to estimate loads for TP, TN, TSS, Cu.

3.0 RESULTS

3.1. Precipitation

The long-term NOAA rainfall data from gauge USW000012897 is shown in **Figure 3-1.** The year 2017, with a markedly higher amount of rainfall, is the year that the City was hit by Hurricane Irma. While most of the annual rainfall amounts have been higher than the long-term average (1942 through 2020), the annual total from 2020 was lower. City of Naples SCADA precipitation daily totals are included in **Figure 3-2**. In a statistical comparison of the rainfall at the SCADA gauges, rainfall was not significantly different among the stations.

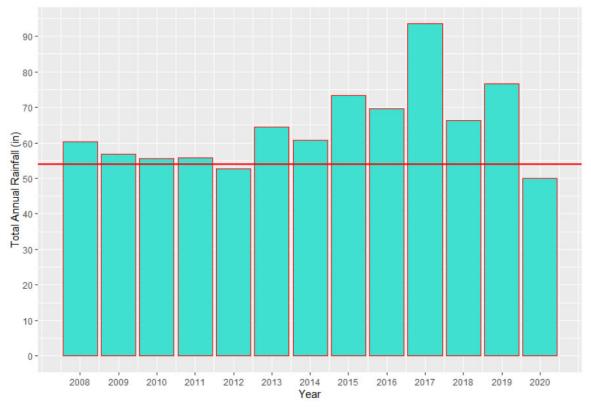


Figure 3-1. Total annual rainfall (bars) and long-term average (1942 through 2020, indicated by red line) rainfall from station USW000012897

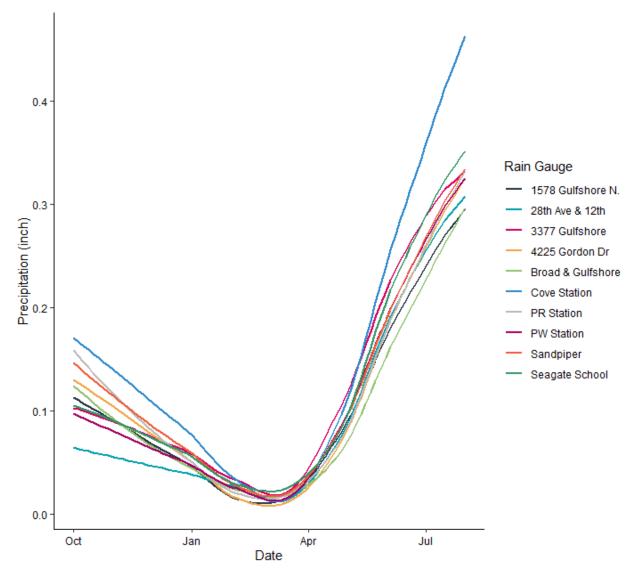


Figure 3-2. City of Naples Stormwater SCADA Daily Precipitation Totals (October 2020-September 2021)

3.2. Summary of Water Quality Data

Water quality summary statistics for the available POR for all lakes and pump stations, as well as a comparison of lakes using box plots, is presented here for the following parameters: Chl-a, Cu, *Enterococci*, *E. coli*, TN, NH4, TKN, NOx, TP, and OP. Summary statistics for all other water quality parameters sampled are available in **Appendix B.** Overall, sampling locations that stood out with the highest average concentrations of nutrients, Chl-a, and fecal indicator bacteria included Half Moon Lake, North Lake, South Lake, Lantern Lake, and the Port Royal Pumping station. Other lakes stood out when considering individual parameters, as described below. Aside from fecal indicator bacteria, there was little variability among most lakes outside of the top five lakes for each parameter.

For quick reference, the box plots in this section display the highest values at the top of the plot and are sorted from highest to lowest (decreasing down the plot) concentration.

The summary statistics for Chl-a for all sampled lakes are presented in **Table 3-1** and the Chl-a box plot comparison of lakes is presented in **Figure 3-3**. Half Moon Lake had the highest average Chl-a concentrations for the long-term POR dataset, but was not included in the 22 lakes sampled by Wood during the 2020-2021 sampling effort because it does not receive public drainage. Aside from Half Moon Lake, the lakes with the five highest average Chl-a concentrations during their sampled POR are North Lake, South Lake, Lantern Lake, Spring Lake, and Lake 13; all these lakes drain directly to either Naples Bay or the Gulf of Mexico. South Lake also had the highest maximum sample at 1018 µg/L.

The summary statistics for Cu are presented in **Table 3-2**, and the Cu box plot comparison of the lakes is presented in **Figure 3-4**. NCH Lake and Devils Lake are the two outliers with the highest average Cu concentrations among sampled lakes. The Cu data for NCH Lake and Devils Lake also exhibit a large degree of variability compared to most other sampled lakes. As a reminder, NCH Lake does not receive public drainage. NCH Lake also historically received copper sulfate treatment and the City educated the lake owner on the benefits to discontinuing use of copper sulfate treatment.

The summary statistics for *E. coli* are presented in **Table 3-3**, and the *E. coli* box plot comparison of lakes is presented in **Figure 3-5**. It should be noted that only the 2020-2021 samples make up the POR for *E. coli* since fecal coliform was sampled in previous years.⁵ The lakes with the five highest average *E. coli* concentrations are Lake 13, Sun Lake Terrace, Lake Diana, Hidden Lake, and North Lake. All lakes but one (Devils Lake) had concentrations higher than 100 counts/100mL. The sampled data are quite variable for most lakes, and there is not a significant degree of separation among lakes outside of the top five.

The summary statistics for *Enterococci* are presented in **Table 3-4**, and the *Enterococci* box plot comparison of lakes is presented in **Figure 3-6**. All three pump stations (Cove Pump, Port Royal Pump, and Public Works Pump) sampled have average *Enterococci* concentrations over 1000 counts/100mL, and the Fleischmann Lake, North Lake, and NCH Lake are among the lakes with the highest *Enterococci* concentrations. Similar to *E. coli*, the *Enterococci* data are largely spread out at all sampling locations.

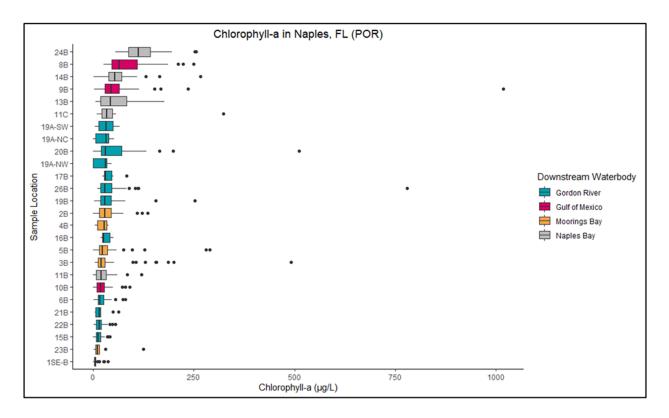
The summary statistics for TN are presented in **Table 3-5**, and the TN box plot comparison of lakes is presented in **Figure 3-7**. Half Moon Lake had the highest average TN concentrations but was not included in the 22 lakes sampled for 2020-2021 because it does not receive public drainage. Aside from Half Moon Lake, the lakes with the five highest average TN concentrations are North Lake, South Lake, Fleischmann Lake, Forest Lake and Lantern Lake.

The summary statistics for NH4 are presented in **Table 3-6**, and the NH4 box plot comparison of lakes is presented in **Figure 3-8**. The three pump stations had the highest average NH4 concentrations among all sampling locations, followed by Half Moon Lake, Lowdermilk Lake, and Lake 13. Most lakes have relatively low average NH4 concentrations with occasional high outliers.

The summary statistics for TKN are presented in **Table 3-7**, and the TKN box plot comparison of lakes is presented in **Figure 3-9**. The TKN data follows a similar distribution among and within lakes as TN. The

⁵ Fecal coliform was not included in the 2020-2021 sampling program because it is no longer used by FDEP as a regulatory criterion; in freshwater Class III waterbodies, the current regulated bacteria is *E. coli*. It has been included in the 2021-2022 sampling program.

highest average TKN concentrations outside of Half Moon Lake were found in North Lake, South Lake, Forest Lake, Lantern Lake, Fleischmann Lake, and Port Royal pumping station.


The summary statistics for NOx are presented in **Table 3-8**, and the NOx box plot comparison of lakes is presented in **Figure 3-10**. Average NOx concentrations were highest at the three pump station sampling locations, followed by Lake Suzanne, Half Moon Lake, Hidden Lake, and Devils Lake. There is little differentiation among most other sampled lakes.

The summary statistics for TP are presented in **Table 3-9**, and the TP box plot comparison of lakes is presented in **Figure 3-11**. There is little differentiation or variability in average TP concentrations among the sampled lakes. Aside from Half Moon Lake, Lantern Lake and Port Royal pump station stood out with the highest average TP concentrations.

The summary statistics for OP are presented in **Table 3-10**, and the OP box plot comparison of lakes is presented in **Figure 3-12**. The OP data follows a similar distribution among and within lakes as TP, with the highest average concentrations outside of Half Moon Lake found in Lantern Lake and the Port Royal pump station.

Lake Name	Station ID	POR	POR	Count	Chlorophyll-a Concentration (µg/L)				
		Start	End		Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Dec-14	Sep-21	37	23.93	18.30	0.62	91.50	21.21
East Lake	11B	Dec-14	Sep-21	37	29.34	20.60	0.13	136.00	30.84
Spring Lake	11C	Oct-20	Sep-21	12	75.59	37.75	9.04	323.00	101.89
Lake 13	13B	Oct-20	Sep-21	12	58.31	52.70	6.36	177.00	49.71
Lantern Lake	14B	Dec-14	Sep-21	37	63.27	51.40	1.93	266.00	47.04
Sun Lake Terrace	15B	Dec-14	Sep-21	43	14.77	12.60	0.13	41.00	9.96
Thurner	16B	Oct-20	Sep-21	12	31.14	25.50	18.40	51.40	12.76
Lake Diana	17B	Oct-20	Sep-21	12	39.43	35.60	23.30	83.20	16.95
Fleischmann Lake	19B	Dec-14	Sep-21	72	37.64	30.05	2.45	252.00	34.41
Devils Lake	1SE-B	Dec-14	Sep-21	67	6.00	4.41	0.13	36.90	6.22
Forest Lake	20B	Dec-14	Sep-21	67	54.04	30.80	0.13	511.00	68.99
Willow	21B	Oct-20	Sep-21	12	22.15	16.35	4.37	63.00	20.32
Lake Manor	22B	Dec-14	Sep-21	67	15.77	15.20	2.01	54.80	10.66
Lowdermilk	23B	Oct-20	Sep-21	12	20.02	10.10	2.28	124.00	33.59
NCH Lake	26B	Dec-14	Sep-21	67	48.23	29.70	11.00	779.00	93.72
Swan Lake	2B	Dec-14	Sep-21	61	33.79	28.30	0.13	135.00	27.25
Colonnade Lake	3B	Dec-14	Sep-21	67	39.30	19.30	4.65	492.00	70.45
Hidden	4B	Oct-20	Sep-21	12	23.50	26.15	5.02	38.00	12.04
Lake Suzanne	5B	Dec-14	Sep-21	67	35.03	22.40	0.67	290.00	49.13
Mandarin Lake	6B	Dec-14	Sep-21	43	22.18	17.00	1.24	80.00	16.44
North Lake	8B	Oct-17	Sep-21	48	88.06	67.10	25.90	249.00	57.46
South Lake	9B	Dec-14		67	66.78	46.00	3.29	1018.00	124.28

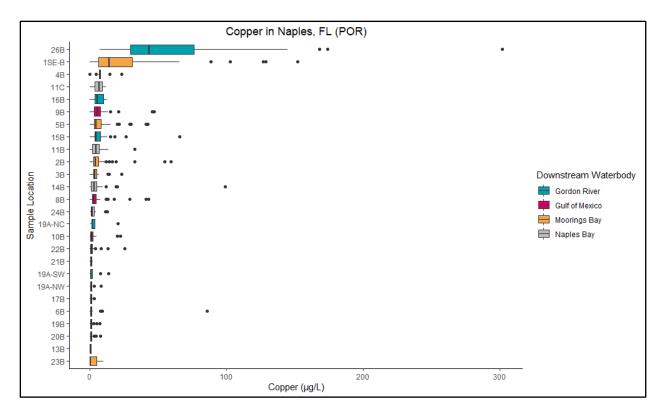

Table 3-1. Chlorophyll-a Period of Record Summary Statistics by Sampling Location

Figure 3-3. Chlorophyll-a Box Plots by Sampling Location, Available Period of Record. (Note: Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)

		POR	POR			Copper	Concentr	ation (µg	/L)
Lake Name	Station ID	Start	End	Count	Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Dec-14	Sep-21	37	2.52	1.43	0.14	22.30	4.61
East Lake	11B	Dec-14	Sep-21	37	5.59	4.50	0.17	33.00	5.84
Spring Lake	11C	Oct-20	Sep-21	12	6.14	6.30	0.17	12.20	4.05
Cove Pump	11-Pump	Dec-14	Sep-21	36	2.57	1.83	0.17	15.50	2.77
Lake 13	13B	Oct-20	Sep-21	12	0.71	0.76	0.14	1.20	0.39
Lantern Lake	14B	Dec-14	Sep-21	37	6.53	3.07	0.14	99.30	16.14
Port Royal Pump	14-Pump	Dec-14	Sep-21	36	5.13	2.34	0.12	46.00	8.74
Sun Lake Terrace	15B	Dec-14	Sep-21	43	7.37	4.65	0.17	65.70	10.31
Thurner	16B	Oct-20	Sep-21	12	5.78	4.63	0.17	12.90	4.38
Lake Diana	17B	Oct-20	Sep-21	12	1.23	1.08	0.17	3.36	0.95
Fleischmann Lake	19B	Dec-14	Sep-21	72	1.18	0.87	0.17	7.40	1.34
Devils Lake	1SE-B	Dec-14	Sep-21	67	43.63	14.80	0.17	1160.00	142.07
Forest Lake	20B	Dec-14	Sep-21	67	1.15	0.83	0.17	8.00	1.19
Willow	21B	Oct-20	Sep-21	12	1.15	1.12	0.17	2.32	0.71
Lake Manor	22B	Dec-14	Sep-21	67	2.04	1.36	0.14	25.60	3.48
Lowdermilk	23B	Oct-20	Sep-21	12	2.98	0.95	0.14	10.20	3.61
NCH Lake	26B	Dec-14	Sep-21	67	65.31	43.70	7.24	436.00	67.07
Swan Lake	2B	Dec-14	Sep-21	61	7.21	4.12	0.17	59.40	10.43
Colonnade Lake	3B	Dec-14	Sep-21	67	4.47	3.92	0.17	23.60	3.53
Hidden	4B	Oct-20	Sep-21	12	8.46	7.64	0.17	23.60	5.80
Lake Suzanne	5B	Dec-14	Sep-21	67	7.96	4.82	0.17	42.80	8.44
Mandarin Lake	6B	Dec-14	Sep-21	43	3.31	0.92	0.17	86.20	13.06
North Lake	8B	Oct-17	Sep-21	48	6.13	2.94	0.17	43.10	9.12
South Lake	9B	Dec-14	Sep-21	67	7.31	5.39	0.17	47.20	8.05
Public Works Pump	PW-Pump	Dec-14	Sep-21	36	4.23	3.21	0.14	21.40	3.86

Table 3-2. Copper Period of Record Summary Statistics by Sampling Location

Figure 3-4. Copper Box Plots by Sampling Location, Available Period of Record (Note: Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)

		POR	POR			E. coli C	oncentrat	ion (#/10	0mL)
Lake Name	Station ID	Start	End	Count	Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Oct-20	Sep-21	12	387	168	31	1223	386
East Lake	11B	Oct-20	Sep-21	12	525	550	148	1054	251
Spring Lake	11C	Oct-20	Sep-21	12	554	300	74	1500	476
Cove Pump	11-Pump	Oct-20	Sep-21	12	546	282	52	3076	825
Lake 13	13B	Oct-20	Sep-21	12	1761	454	134	7701	2423
Lantern Lake	14B	Oct-20	Sep-21	12	597	382	120	2909	758
Port Royal Pump	14-Pump	Oct-20	Sep-21	12	300	262	41	583	175
Sun Lake Terrace	15B	Oct-20	Sep-21	12	1203	584	185	8664	2368
Thurner	16B	Oct-20	Sep-21	12	1457	307	110	12997	3643
Lake Diana	17B	Oct-20	Sep-21	12	1480	660	203	5794	1963
Fleischmann Lake	19B	Oct-20	Sep-21	12	319	344	41	663	212
Devils Lake	1SE-B	Oct-20	Sep-21	12	41	31	5	122	38
Forest Lake	20B	Oct-20	Sep-21	12	216	140	52	842	231
Willow	21B	Oct-20	Sep-21	12	534	369	86	1553	428
Lake Manor	22B	Oct-20	Sep-21	12	582	440	109	2359	611
Lowdermilk	23B	Oct-20	Sep-21	12	552	341	74	2603	681
NCH Lake	26B	Oct-20	Sep-21	12	589	529	155	1112	296
Swan Lake	2B	Oct-20	Sep-21	12	120	80	10	393	123
Colonnade Lake	3B	Oct-20	Sep-21	12	150	115	10	565	148
Hidden	4B	Oct-20	Sep-21	12	1004	671	161	3873	1069
Lake Suzanne	5B	Oct-20	Sep-21	12	172	86	41	663	202
Mandarin Lake	6B	Oct-20	Sep-21	12	279	208	41	744	234
North Lake	8B	Oct-20	Sep-21	12	767	302	63	5475	1499
South Lake	9B	Oct-20	Sep-21	12	205	231	41	420	112
Public Works Pump	PW-Pump	Oct-20	Sep-21	12	514	200	98	1785	583

Table 3-3. E. coli Period of Record Summary Statistics by Sampling Location

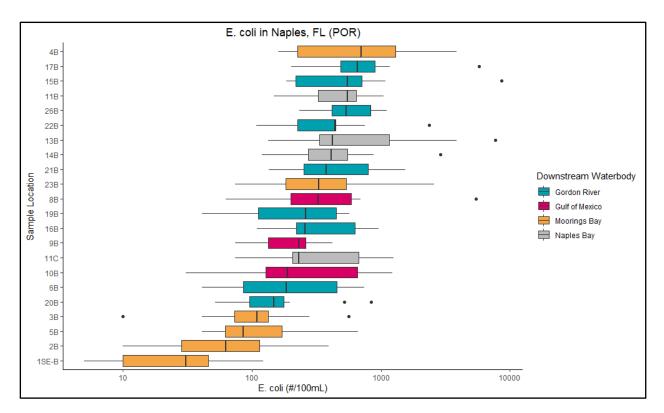
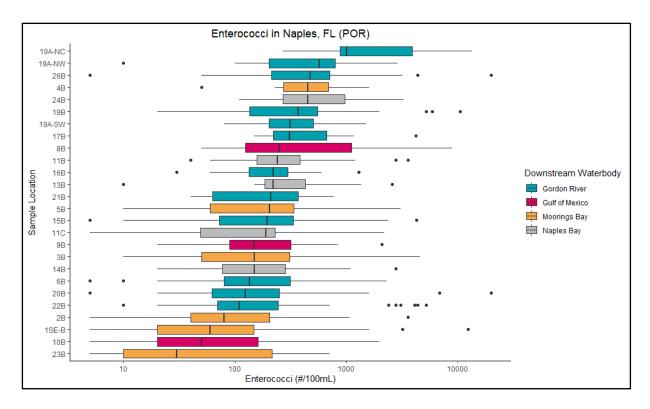



Figure 3-5. E. coli Box Plots by Sampling Location, Available Period of Record

		POR	POR		En	terococci C	oncentra	ation (#/	100mL)
Lake Name	Station ID	Start	End	Count	Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Dec-14	Sep-21	37	186	50	5	2000	361
East Lake	11B	Dec-14	Sep-21	37	473	240	40	3600	728
Spring Lake	11C	Oct-20	Sep-21	12	448	200	5	2200	719
Cove Pump	11-Pump	Dec-14	Sep-21	36	3232	1750	400	14900	4075
Lake 13	13B	Oct-20	Sep-21	12	538	245	10	2600	734
Lantern Lake	14B	Dec-14	Sep-21	37	419	150	20	5000	914
Port Royal Pump	14-Pump	Dec-14	Sep-21	36	1030	550	80	5200	1168
Sun Lake Terrace	15B	Dec-14	Sep-21	43	409	200	5	4300	753
Thurner	16B	Oct-20	Sep-21	12	493	225	30	2400	691
Lake Diana	17B	Oct-20	Sep-21	12	1082	340	150	4400	1539
Fleischmann Lake	19B	Dec-14	Sep-21	72	683	370	20	10500	1496
Devils Lake	1SE-B	Dec-14	Sep-21	67	363	60	5	12500	1573
Forest Lake	20B	Dec-14	Sep-21	67	593	130	5	20000	2554
Willow	21B	Oct-20	Sep-21	12	293	270	40	780	243
Lake Manor	22B	Dec-14	Sep-21	67	476	110	10	5200	1063
Lowdermilk	23B	Oct-20	Sep-21	12	193	30	5	710	262
NCH Lake	26B	Dec-14	Sep-21	67	892	470	5	20000	2481
Swan Lake	2B	Dec-14	Sep-21	61	207	80	5	3600	480
Colonnade Lake	3B	Dec-14	Sep-21	67	341	150	10	4600	650
Hidden	4B	Oct-20	Sep-21	12	554	400	50	1600	426
Lake Suzanne	5B	Dec-14	Sep-21	67	318	210	10	3100	480
Mandarin Lake	6B	Dec-14	Sep-21	43	270	140	5	2300	385
North Lake	8B	Oct-17	Sep-21	48	938	250	50	9000	1581
South Lake	9B	Dec-14	Sep-21	67	239	150	20	2100	292
Public Works Pump	PW-Pump	Dec-14	Sep-21	36	1257	440	60	13400	2455

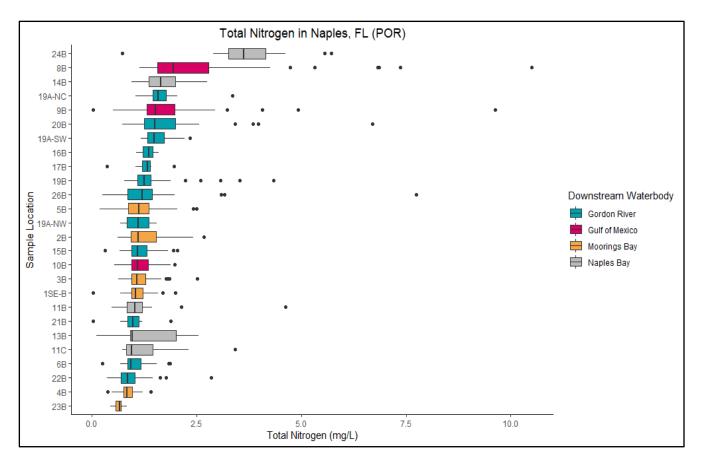

Table 3-4. Enterococci Period of Record Summary Statistics by Sampling Location

Figure 3-6. *Enterococci* Box Plots by Sampling Location, Available Period of Record (Note: Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)

		POR	POR	c .	1	otal Nitrog	en Conce	entration	(mg/L)
Lake Name	Station ID	Start	End	Count	Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Dec-14	Sep-21	37	1.16	1.08	0.53	1.98	0.35
East Lake	11B	Dec-14	Sep-21	37	1.18	1.03	0.46	4.62	0.70
Spring Lake	11C	Oct-20	Sep-21	12	1.55	0.95	0.73	3.95	1.11
Cove Pump	11-Pump	Dec-14	Sep-21	36	1.40	1.38	0.81	2.34	0.26
Lake 13	13B	Oct-20	Sep-21	12	1.31	0.99	0.10	2.55	0.79
Lantern Lake	14B	Dec-14	Sep-21	37	1.73	1.64	0.95	2.75	0.46
Port Royal Pump	14-Pump	Dec-14	Sep-21	36	1.65	1.52	0.50	4.91	0.84
Sun Lake Terrace	15B	Dec-14	Sep-21	43	1.13	1.09	0.32	2.03	0.32
Thurner	16B	Oct-20	Sep-21	12	1.35	1.37	1.05	1.59	0.18
Lake Diana	17B	Oct-20	Sep-21	12	1.35	1.34	0.36	2.29	0.47
Fleischmann Lake	19B	Dec-14	Sep-21	72	1.37	1.25	0.77	4.33	0.58
Devils Lake	1SE-B	Dec-14	Sep-21	67	1.08	1.04	0.03	1.99	0.27
Forest Lake	20B	Dec-14	Sep-21	67	1.72	1.47	0.72	6.69	0.88
Willow	21B	Oct-20	Sep-21	12	0.98	1.01	0.03	1.88	0.42
Lake Manor	22B	Dec-14	Sep-21	67	0.90	0.85	0.36	2.84	0.36
Lowdermilk	23B	Oct-20	Sep-21	12	0.62	0.63	0.44	0.83	0.12
NCH Lake	26B	Dec-14	Sep-21	67	1.29	1.19	0.25	7.75	0.93
Swan Lake	2B	Dec-14	Sep-21	61	1.27	1.11	0.61	2.67	0.48
Colonnade Lake	3B	Dec-14	Sep-21	67	1.14	1.06	0.62	2.52	0.31
Hidden	4B	Oct-20	Sep-21	12	0.84	0.83	0.37	1.40	0.28
Lake Suzanne	5B	Dec-14	Sep-21	67	1.14	1.11	0.19	2.50	0.42
Mandarin Lake	6B	Dec-14	Sep-21	43	1.03	0.93	0.25	1.87	0.31
North Lake	8B	Oct-17	Sep-21	48	3.60	1.97	1.13	46.50	6.60
South Lake	9B	Dec-14	Sep-21	67	1.83	1.53	0.03	9.63	1.21
Public Works Pump	PW-Pump	Dec-14	Sep-21	36	1.29	1.25	0.93	1.90	0.23

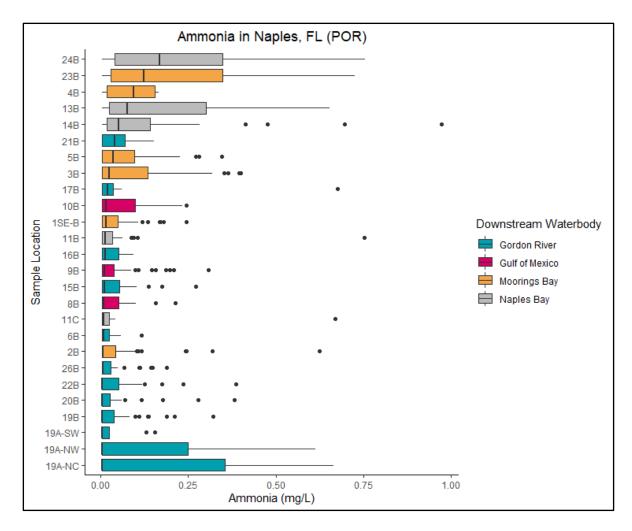

Table 3-5. Total Nitrogen Period of Record Summary Statistics by Sampling Location

Figure 3-7. Total Nitrogen Box Plots by Sampling Location, Available Period of Record (Note: Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)

	Charling ID	POR	POR	C		Ammonia	Concent	ration (m	ig/L)
Lake Name	Station ID	Start	End	Count	Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Dec-14	Sep-21	37	0.063	0.020	0.004	0.244	0.075
East Lake	11B	Dec-14	Sep-21	37	0.044	0.015	0.004	0.753	0.123
Spring Lake	11C	Oct-20	Sep-21	12	0.071	0.011	0.004	0.669	0.189
Cove Pump	11-Pump	Dec-14	Sep-21	36	0.318	0.309	0.166	0.524	0.074
Lake 13	13B	Oct-20	Sep-21	12	0.185	0.119	0.004	0.654	0.201
Lantern Lake	14B	Dec-14	Sep-21	37	0.130	0.052	0.004	0.973	0.207
Port Royal Pump	14-Pump	Dec-14	Sep-21	36	0.366	0.336	0.004	1.100	0.204
Sun Lake Terrace	15B	Dec-14	Sep-21	43	0.043	0.011	0.004	0.272	0.061
Thurner	16B	Oct-20	Sep-21	12	0.037	0.017	0.004	0.094	0.037
Lake Diana	17B	Oct-20	Sep-21	12	0.079	0.022	0.004	0.675	0.189
Fleischmann Lake	19B	Dec-14	Sep-21	72	0.034	0.004	0.004	0.322	0.056
Devils Lake	1SE-B	Dec-14	Sep-21	67	0.040	0.017	0.004	0.245	0.052
Forest Lake	20B	Dec-14	Sep-21	67	0.046	0.008	0.004	1.110	0.145
Willow	21B	Oct-20	Sep-21	12	0.045	0.034	0.004	0.154	0.047
Lake Manor	22B	Dec-14	Sep-21	67	0.040	0.004	0.004	0.387	0.064
Lowdermilk	23B	Oct-20	Sep-21	12	0.207	0.124	0.004	0.725	0.241
NCH Lake	26B	Dec-14	Sep-21	67	0.024	0.004	0.004	0.190	0.038
Swan Lake	2B	Dec-14	Sep-21	61	0.052	0.008	0.004	0.624	0.107
Colonnade Lake	3B	Dec-14	Sep-21	67	0.086	0.027	0.004	0.399	0.112
Hidden	4B	Oct-20	Sep-21	12	0.092	0.104	0.004	0.166	0.066
Lake Suzanne	5B	Dec-14	Sep-21	67	0.068	0.038	0.004	0.345	0.081
Mandarin Lake	6B	Dec-14	Sep-21	43	0.018	0.008	0.004	0.116	0.021
North Lake	8B	Oct-17	Sep-21	48	0.032	0.009	0.004	0.214	0.045
South Lake	9B	Dec-14	Sep-21	67	0.088	0.013	0.004	2.210	0.308
Public Works Pump	PW-Pump	Dec-14	Sep-21	36	0.336	0.352	0.103	0.537	0.089

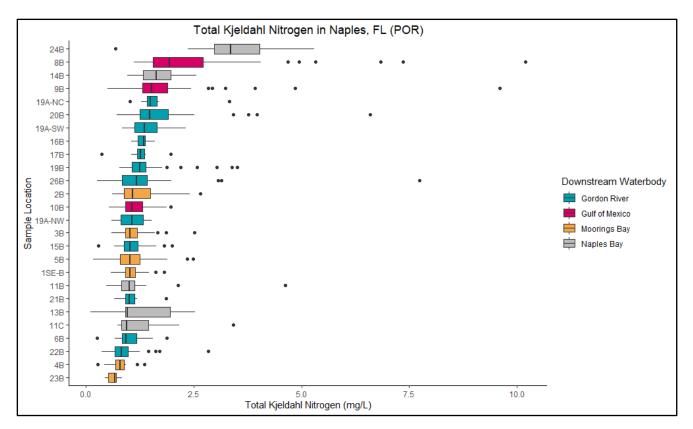

Table 3-6. Ammonia Period of Record Summary Statistics by Sampling Location

Figure 3-8. Ammonia Box Plots by Sampling Location, Available Period of Record (Note: Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)

		POR	POR	. .	Total K	(jeldahl N	itrogen (Concentr	ation (mg/L)
Lake Name	Station ID	Start	End	Count	Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Dec-14	Sep-21	37	1.136	1.070	0.526	1.970	0.351
East Lake	11B	Dec-14	Sep-21	37	1.141	1.020	0.463	4.620	0.705
Spring Lake	11C	Oct-20	Sep-21	12	1.521	0.946	0.726	3.780	1.066
Cove Pump	11-Pump	Dec-14	Sep-21	36	1.098	1.040	0.502	2.170	0.260
Lake 13	13B	Oct-20	Sep-21	12	1.292	0.983	0.101	2.530	0.785
Lantern Lake	14B	Dec-14	Sep-21	37	1.698	1.630	0.950	2.560	0.433
Port Royal Pump	14-Pump	Dec-14	Sep-21	36	1.468	1.335	0.443	4.810	0.844
Sun Lake Terrace	15B	Dec-14	Sep-21	43	1.058	1.020	0.284	1.990	0.304
Thurner	16B	Oct-20	Sep-21	12	1.320	1.340	1.050	1.590	0.168
Lake Diana	17B	Oct-20	Sep-21	12	1.327	1.290	0.359	2.290	0.468
Fleischmann Lake	19B	Dec-14	Sep-21	72	1.332	1.230	0.774	3.510	0.514
Devils Lake	1SE-B	Dec-14	Sep-21	67	1.032	1.020	0.577	1.810	0.215
Forest Lake	20B	Dec-14	Sep-21	67	1.698	1.470	0.707	6.600	0.871
Willow	21B	Oct-20	Sep-21	12	1.059	1.015	0.647	1.860	0.297
Lake Manor	22B	Dec-14	Sep-21	67	0.862	0.808	0.362	2.830	0.353
Lowdermilk	23B	Oct-20	Sep-21	12	0.612	0.612	0.440	0.832	0.130
NCH Lake	26B	Dec-14	Sep-21	67	1.272	1.160	0.248	7.740	0.932
Swan Lake	2B	Dec-14	Sep-21	61	1.226	1.080	0.609	2.650	0.475
Colonnade Lake	3B	Dec-14	Sep-21	67	1.078	1.010	0.586	2.520	0.297
Hidden	4B	Oct-20	Sep-21	12	0.782	0.751	0.269	1.350	0.292
Lake Suzanne	5B	Dec-14	Sep-21	67	1.055	1.010	0.163	2.480	0.396
Mandarin Lake	6B	Dec-14	Sep-21	43	1.011	0.923	0.248	1.870	0.292
North Lake	8B	Oct-17	Sep-21	48	3.516	1.960	1.110	46.400	6.568
South Lake	9B	Dec-14	Sep-21	67	1.825	1.520	0.496	9.600	1.180
Public Works Pump	PW-Pump	Dec-14	Sep-21	36	1.044	1.010	0.692	1.570	0.204

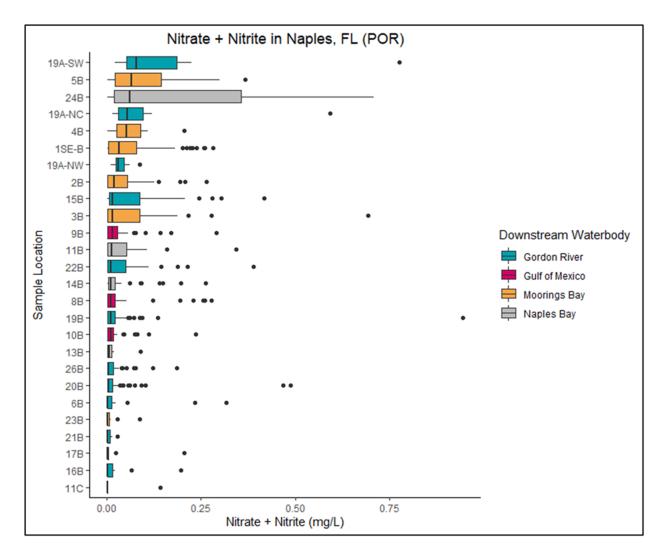

 Table 3-7. Total Kjeldahl Nitrogen Period of Record Summary Statistics by Sampling Location

Figure 3-9. Total Kjeldahl Nitrogen Box Plots by Sampling Location, Available Period of Record (Note: Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)

		POR	POR	6	Nit	trate+Nitr	ite Conco	entratior	n (mg/L)
Lake Name	Station ID	Start	End	Count	Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Dec-14	Sep-21	37	0.024	0.011	0.002	0.236	0.043
East Lake	11B	Dec-14	Sep-21	37	0.039	0.015	0.003	0.344	0.064
Spring Lake	11C	Oct-20	Sep-21	12	0.029	0.003	0.003	0.170	0.060
Cove Pump	11-Pump	Dec-14	Sep-21	36	0.306	0.305	0.106	0.496	0.091
Lake 13	13B	Oct-20	Sep-21	12	0.015	0.006	0.003	0.091	0.025
Lantern Lake	14B	Dec-14	Sep-21	37	0.036	0.012	0.002	0.263	0.060
Port Royal Pump	14-Pump	Dec-14	Sep-21	36	0.182	0.172	0.059	0.468	0.092
Sun Lake Terrace	15B	Dec-14	Sep-21	43	0.073	0.017	0.002	0.418	0.106
Thurner	16B	Oct-20	Sep-21	12	0.027	0.003	0.003	0.197	0.056
Lake Diana	17B	Oct-20	Sep-21	12	0.022	0.003	0.003	0.206	0.058
Fleischmann Lake	19B	Dec-14	Sep-21	72	0.032	0.012	0.002	0.945	0.112
Devils Lake	1SE-B	Dec-14	Sep-21	67	0.063	0.034	0.002	0.282	0.077
Forest Lake	20B	Dec-14	Sep-21	67	0.028	0.003	0.002	0.487	0.082
Willow	21B	Oct-20	Sep-21	12	0.007	0.003	0.003	0.030	0.009
Lake Manor	22B	Dec-14	Sep-21	67	0.037	0.012	0.002	0.390	0.062
Lowdermilk	23B	Oct-20	Sep-21	12	0.014	0.003	0.003	0.087	0.024
NCH Lake	26B	Dec-14	Sep-21	67	0.016	0.006	0.002	0.187	0.029
Swan Lake	2B	Dec-14	Sep-21	61	0.044	0.023	0.002	0.265	0.057
Colonnade Lake	3B	Dec-14	Sep-21	67	0.062	0.017	0.002	0.693	0.102
Hidden	4B	Oct-20	Sep-21	12	0.063	0.050	0.003	0.207	0.056
Lake Suzanne	5B	Dec-14	Sep-21	67	0.089	0.066	0.003	0.367	0.080
Mandarin Lake	6B	Dec-14	Sep-21	43	0.021	0.003	0.002	0.317	0.058
North Lake	8B	Oct-17	Sep-21	48	0.081	0.012	0.003	1.880	0.276
South Lake	9B	Dec-14	Sep-21	67	0.030	0.015	0.002	0.291	0.048
Public Works Pump	PW-Pump	Dec-14	Sep-21	36	0.242	0.235	0.103	0.675	0.099

Table 3-8. Nitrate and Nitrite Period of Record Summary Statistics by Sampling Location

Figure 3-10. Nitrate and Nitrite Box Plots by Sampling Location, Available Period of Record (Note: Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)

	Ctation ID	POR	POR	Count	Tot	tal Phosph	orus Cor	ncentratio	on (mg/L)
Lake Name	Station ID	Start	End	Count	Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Dec-14	Sep-21	37	0.104	0.102	0.009	0.199	0.039
East Lake	11B	Dec-14	Sep-21	37	0.097	0.080	0.019	0.398	0.073
Spring Lake	11C	Oct-20	Sep-21	12	0.067	0.061	0.041	0.143	0.028
Cove Pump	11-Pump	Dec-14	Sep-21	36	0.133	0.126	0.059	0.211	0.034
Lake 13	13B	Oct-20	Sep-21	12	0.133	0.132	0.008	0.235	0.072
Lantern Lake	14B	Dec-14	Sep-21	37	0.427	0.375	0.059	1.040	0.251
Port Royal Pump	14-Pump	Dec-14	Sep-21	36	0.425	0.426	0.123	1.210	0.234
Sun Lake Terrace	15B	Dec-14	Sep-21	43	0.054	0.041	0.004	0.356	0.057
Thurner	16B	Oct-20	Sep-21	12	0.068	0.072	0.033	0.101	0.022
Lake Diana	17B	Oct-20	Sep-21	12	0.188	0.189	0.050	0.322	0.061
Fleischmann Lake	19B	Dec-14	Sep-21	72	0.083	0.072	0.009	0.270	0.050
Devils Lake	1SE-B	Dec-14	Sep-21	67	0.045	0.039	0.004	0.208	0.030
Forest Lake	20B	Dec-14	Sep-21	67	0.083	0.059	0.010	0.418	0.076
Willow	21B	Oct-20	Sep-21	12	0.054	0.049	0.024	0.093	0.023
Lake Manor	22B	Dec-14	Sep-21	67	0.080	0.076	0.004	0.265	0.054
Lowdermilk	23B	Oct-20	Sep-21	12	0.075	0.071	0.029	0.119	0.023
NCH Lake	26B	Dec-14	Sep-21	67	0.093	0.084	0.004	0.293	0.056
Swan Lake	2B	Dec-14	Sep-21	61	0.108	0.087	0.008	0.386	0.078
Colonnade Lake	3B	Dec-14	Sep-21	67	0.106	0.097	0.004	0.249	0.049
Hidden	4B	Oct-20	Sep-21	12	0.072	0.069	0.027	0.139	0.034
Lake Suzanne	5B	Dec-14	Sep-21	67	0.131	0.112	0.035	0.454	0.074
Mandarin Lake	6B	Dec-14	Sep-21	43	0.080	0.080	0.014	0.162	0.039
North Lake	8B	Oct-17	Sep-21	48	0.248	0.146	0.014	3.000	0.437
South Lake	9B	Dec-14	Sep-21	67	0.172	0.134	0.014	0.689	0.130
Public Works Pump	PW-Pump	Dec-14	Sep-21	36	0.110	0.097	0.054	0.320	0.053

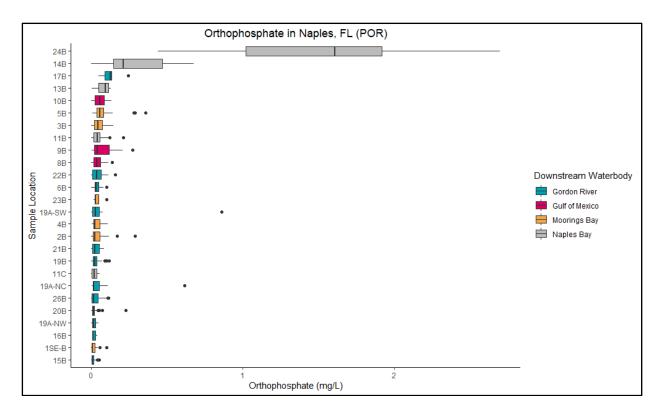
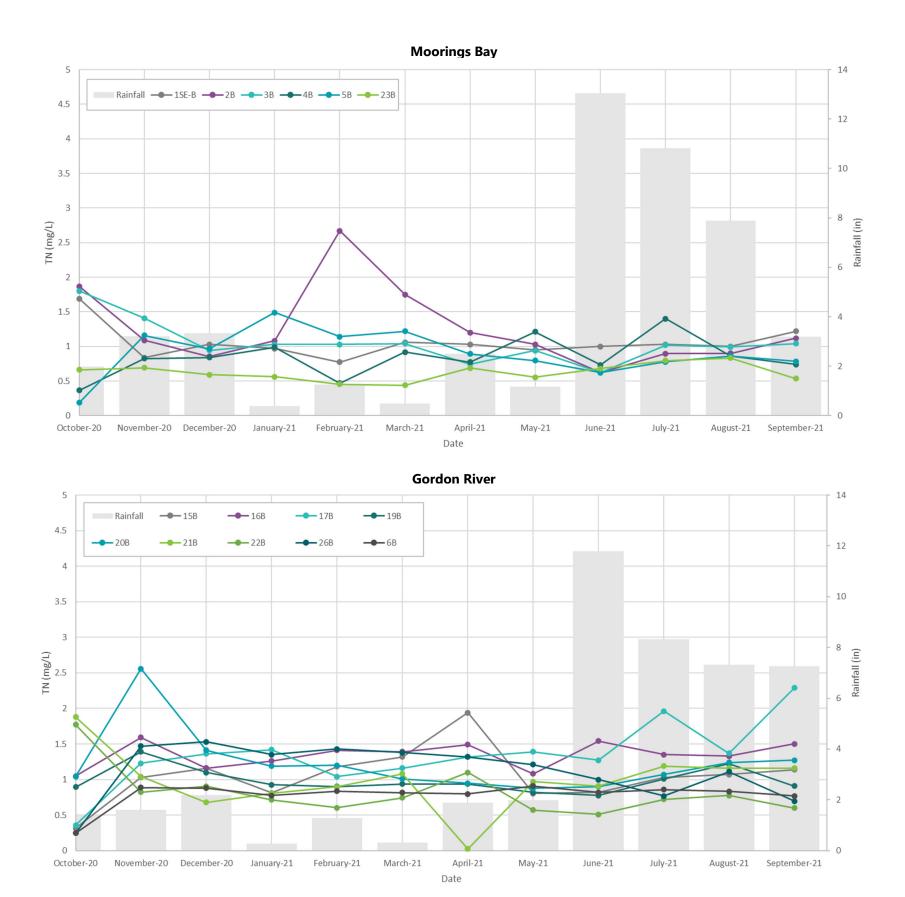

Table 3-9. Total Phosphorus Period of Record Summary Statistics by Sampling Location

Figure 3-11. Total Phosphorus Box Plots by Sampling Location, Available Period of Record (Note: Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)

	Ctation ID	POR	POR	Carat	Ort	thophosph	nate Con	centratio	on (mg/L)
Lake Name	Station ID	Start	End	Count	Average	Median	Min.	Max.	Standard Dev.
Alligator Lake	10B	Dec-14	Sep-21	37	0.059	0.058	0.002	0.134	0.038
East Lake	11B	Dec-14	Sep-21	37	0.046	0.043	0.001	0.212	0.043
Spring Lake	11C	Oct-20	Sep-21	12	0.023	0.022	0.001	0.058	0.020
Cove Pump	11-Pump	Dec-14	Sep-21	36	0.101	0.105	0.041	0.140	0.024
Lake 13	13B	Oct-20	Sep-21	12	0.075	0.089	0.006	0.132	0.044
Lantern Lake	14B	Dec-14	Sep-21	37	0.275	0.199	0.001	0.678	0.199
Port Royal Pump	14-Pump	Dec-14	Sep-21	36	0.359	0.315	0.060	1.150	0.213
Sun Lake Terrace	15B	Dec-14	Sep-21	43	0.013	0.008	0.001	0.055	0.013
Thurner	16B	Oct-20	Sep-21	12	0.022	0.014	0.007	0.050	0.016
Lake Diana	17B	Oct-20	Sep-21	12	0.122	0.128	0.050	0.245	0.048
Fleischmann Lake	19B	Dec-14	Sep-21	72	0.031	0.024	0.001	0.121	0.026
Devils Lake	1SE-B	Dec-14	Sep-21	67	0.015	0.009	0.001	0.101	0.016
Forest Lake	20B	Dec-14	Sep-21	67	0.021	0.015	0.001	0.230	0.029
Willow	21B	Oct-20	Sep-21	12	0.031	0.023	0.001	0.087	0.029
Lake Manor	22B	Dec-14	Sep-21	67	0.037	0.012	0.002	0.390	0.062
Lowdermilk	23B	Oct-20	Sep-21	12	0.040	0.033	0.017	0.101	0.023
NCH Lake	26B	Dec-14	Sep-21	67	0.029	0.020	0.001	0.117	0.029
Swan Lake	2B	Dec-14	Sep-21	61	0.044	0.028	0.001	0.289	0.049
Colonnade Lake	3B	Dec-14	Sep-21	67	0.052	0.044	0.001	0.148	0.035
Hidden	4B	Oct-20	Sep-21	12	0.040	0.032	0.005	0.111	0.030
Lake Suzanne	5B	Dec-14	Sep-21	67	0.071	0.056	0.010	0.362	0.061
Mandarin Lake	6B	Dec-14	Sep-21	43	0.037	0.034	0.001	0.104	0.023
North Lake	8B	Oct-17	Sep-21	48	0.047	0.042	0.001	0.139	0.034
South Lake	9B	Dec-14	Sep-21	67	0.071	0.040	0.005	0.276	0.064
Public Works Pump	PW-Pump	Dec-14	Sep-21	36	0.079	0.077	0.034	0.126	0.023


 Table 3-10.
 Orthophosphate Period of Record Summary Statistics by Sampling Location

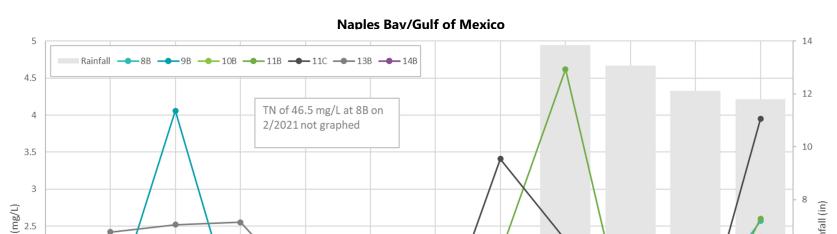


Figure 3-12. Orthophosphate Box Plots by Sampling Location, Available Period of Record (Note: Included in box plot are results from the following stations not included in the current sampling program: 19A-SW, 19A-NC, 19A-NW, 24B)

3.3. Watershed Figures

Watershed figures are included below in **Figures 3-13** through **3-17**. Bars show rainfall and points represent sample locations. The statistically significant trends and correlations for the data displayed in these figures are included in **Section 3.4** and **Section 3.5**

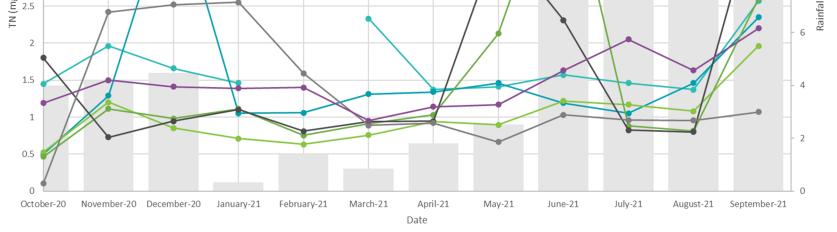
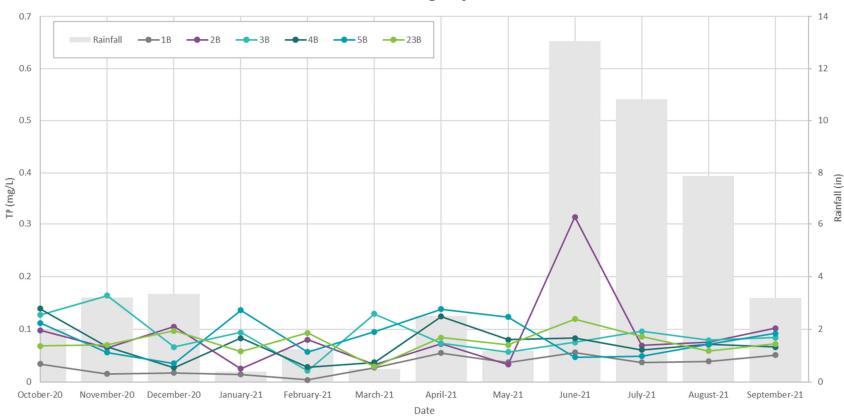
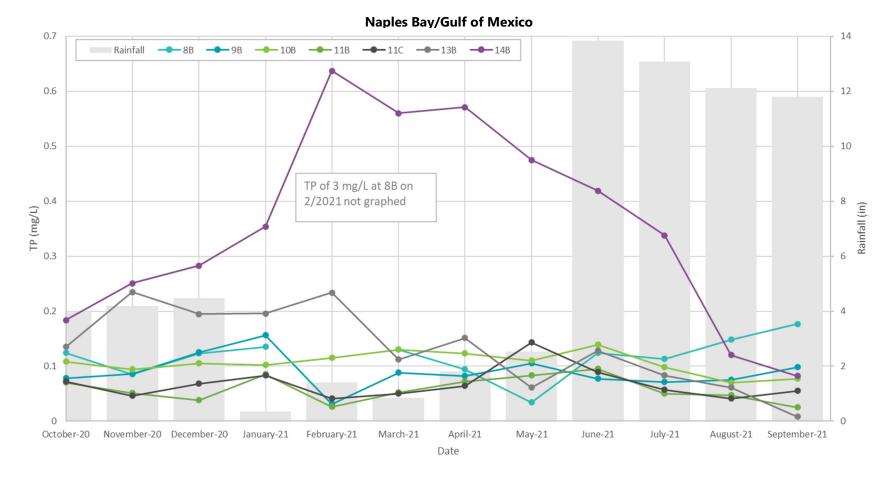
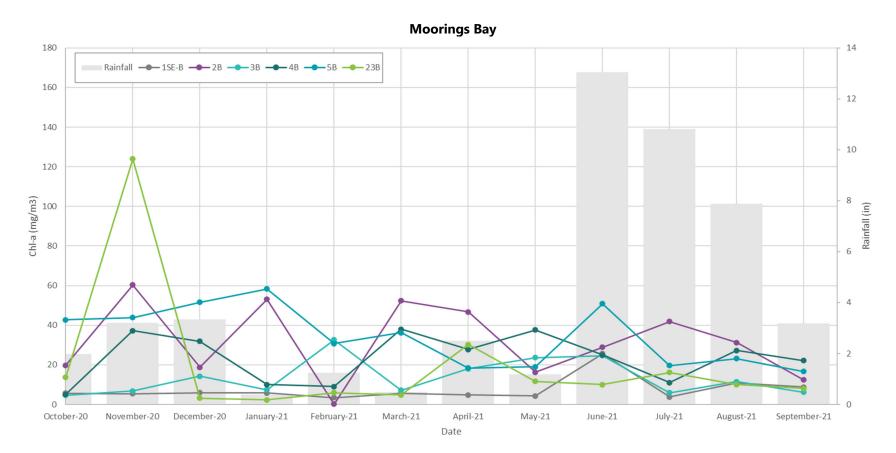
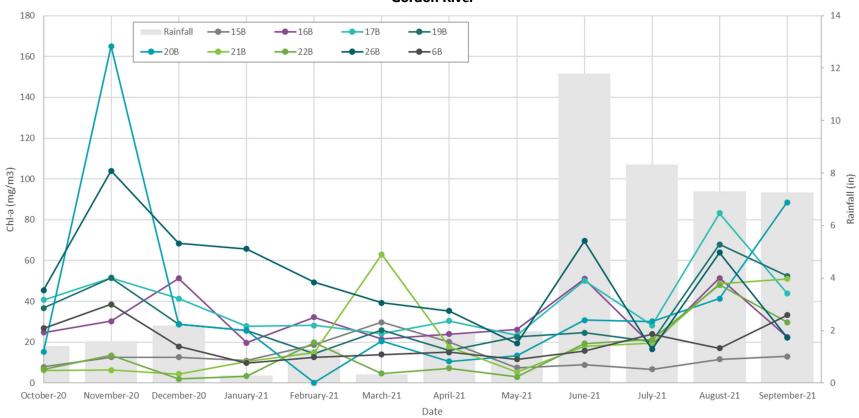
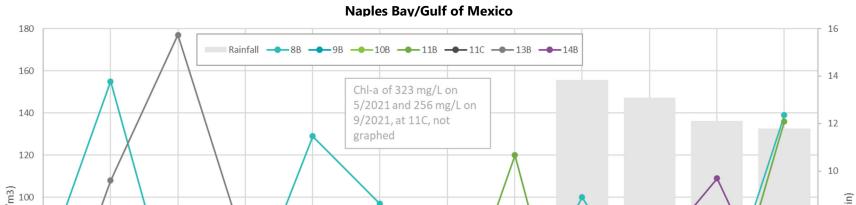




Figure 3-13. Time series plots of total nitrogen and precipitation from October 2020 through September 2021 at lakes that ultimately drain to Moorings Bay (top), Gordon River (middle), or Naples Bay/Gulf of Mexico (bottom).

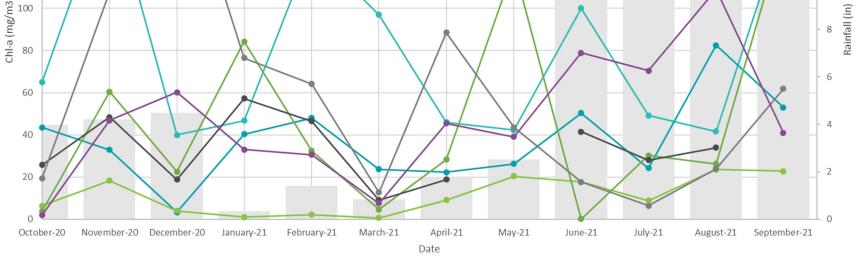
Moorings Bay

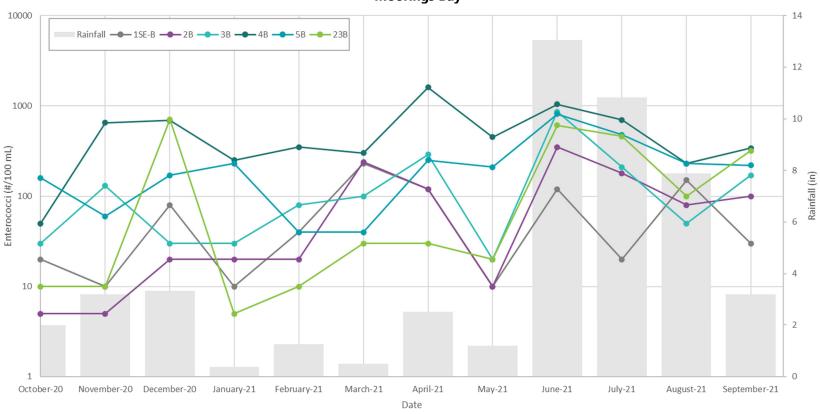



0.7 14 **——**19B Rainfall **——**15B **——**16B **—**17B **—**21B **—**22B **—**26B **—**6B **—**20B 12 0.6 10 0.5 0.4 8 Rainfall (in) TP (mg/L) 0.3 6 0.2 4 0.1 2 0 0 October-20 November-20 December-20 January-21 February-21 March-21 April-21 May-21 June-21 July-21 August-21 September-21 Date



Gordon River


Figure 3-14. Time series plots of total phosphorus and precipitation from October 2020 through September 2021 at lakes that ultimately drain to Moorings Bay (top), Gordon River (middle), or Naples Bay/Gulf of Mexico (bottom).



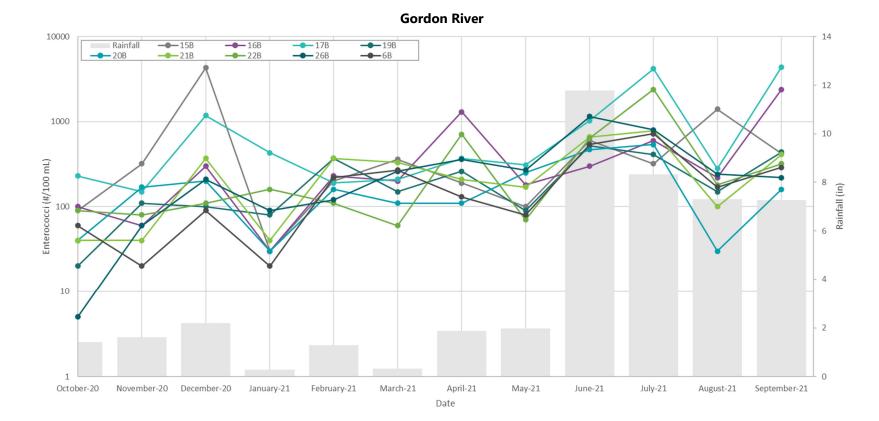
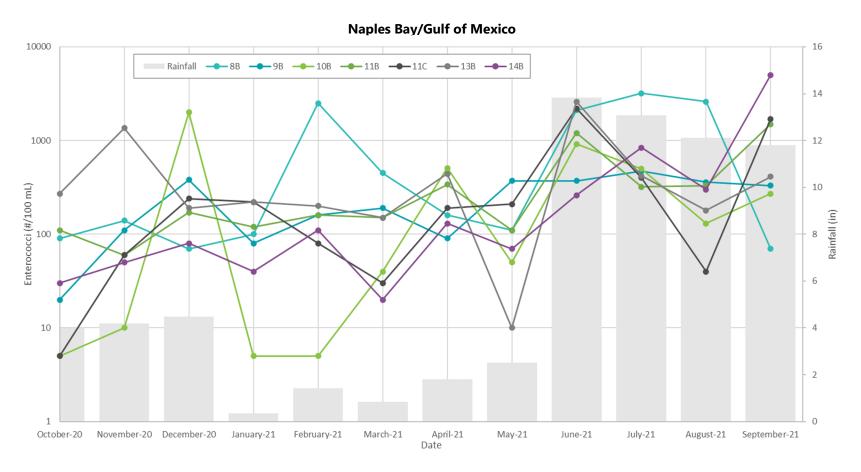
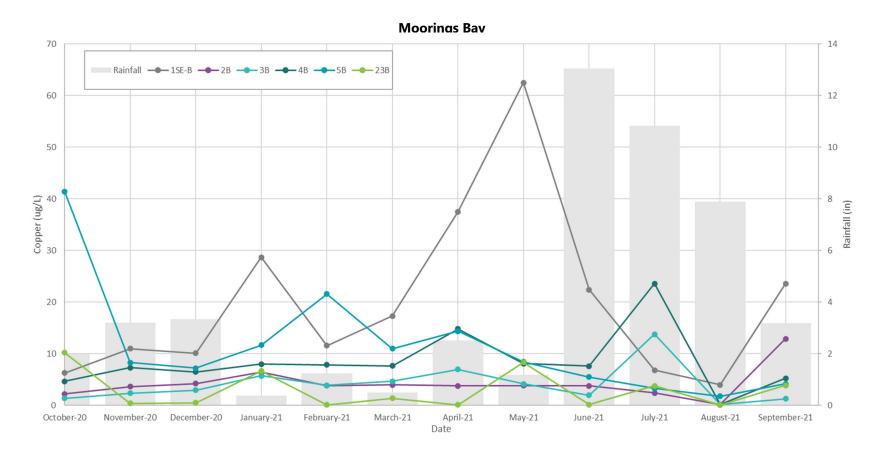

Gordon River

Figure 3-15. Time series plots of chlorophyl-a and precipitation from October 2020 through September 2021 at lakes that ultimately drain to Moorings Bay (top), Gordon River (middle), or Naples Bay/Gulf of Mexico (bottom).

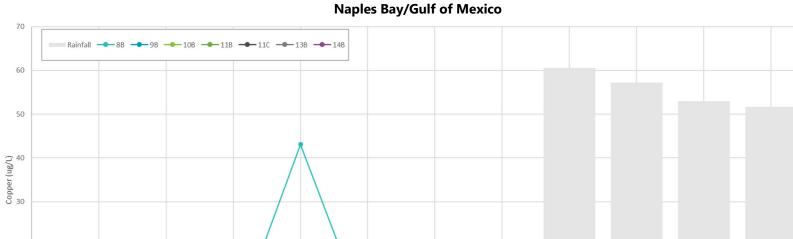


Figure 3-16. Time series plots of *Enterococci* and precipitation from October 2020 through September 2021 at lakes that ultimately drain to Moorings Bay (top), Gordon River (middle), or Naples Bay/Gulf of Mexico (bottom).

16

14

12

10

6

∞ Rainfall (in)



Figure 3-17. Time series plots of copper and precipitation from October 2020 through September 2021 at lakes that ultimately drain to Moorings Bay (top), Gordon River (middle), or Naples Bay/Gulf of Mexico (bottom).

3.4. Trend Analysis

Trends were analyzed for the following parameters: Chl-a, NOx, NH4, TKN, TN, OP, TP, TSS, Cu, *Enterococci* and fecal coliform. Statistically significant trends in water quality are presented in **Table 3-11** (Cu, TSS, nutrients, and Chl-a) and **Table 3-12** (*Enterococci* and fecal coliform). Only waterbodies with multiple years of data were included in the trend analysis. It was not possible to evaluate trends of *E. coli* as only one year of data is available.

Increasing trends can be a useful preliminary screening tool to assess if there may be a water quality issue at hand. Monthly data are valuable for predicting trends and changes in conditions, however they cannot reveal the mechanisms causing those changes in conditions. Generally, anthropogenic impacts in watersheds can result in changes in runoff quantity and quality, especially with respect to nutrients, TSS, metals and bacteria. For example, nutrients can be introduced to stormwater lakes via runoff from fertilized lawns. However, the form of nutrients in the runoff (for example, dissolved or particulate) varies and once introduced into the water column, in-lake process can further affect the nutrient concentrations. In some lakes, sediments can be a source of nutrients. Monthly water quality sampling cannot account for the specific runoff characteristics or the in-lake process.

Forty-eight significant trends in 12 lakes and three pump stations were identified among the Cu, nutrients, and Chl-a parameters, and 12 significant trends in 10 lakes were identified among the bacteria parameters. Most significant trends were decreasing, but increasing trends were identified for NOx, NH4 and OP in Alligator Lake, NOx at the Port Royal pump station, OP in Lake Manor, Chl-a in Devils Lake and copper in Lake Suzanne. Statistically significant increasing trends for *Enterococci* were identified in Alligator Lake, Sun Lake Terrace, Forest Lake, and South Lake. Statistically significant increasing trends for fecal coliform were identified in Forest Lake, Lake Manor, North Lake, and South Lake. In addition to trends of raw data, trends of the highest Chl-a concentration per year for each lake were analyzed **(Table 3-13)** to support the investigation into lake health described in **Section 3.7.2**. East Lake, Devils Lake, and Lake Manor all had statistically significant increasing trends in maximum annual Chl-a values.

It should also be noted that while the trends may be statistically significant, they may not be ecologically significant. A trend slope near zero likely will not show a measurable effect within a reasonable time frame (i.e., years to decades). Therefore, decreasing trends do not necessarily indicate that additional water quality improvement projects would not be beneficial to the stormwater lake and downstream.

If a parameter/lake combination is not listed in **Table 3-11** through **Table 3-13**, a statistically significant trend was not observed for that parameter/lake.

Station ID	Parameter	Sen's Slope	Tau	<i>p</i> -value	Trend
	Chl-a	-0.19	-0.24	0.03	Significantly Decreasing
	NOx	0.00	0.27	0.02	Significantly Increasing
10B	NH4	0.00	0.33	0.01	Significantly Increasing
	TKN	0.00	-0.24	0.03	Significantly Decreasing
	OP	0.00	0.24	0.04	Significantly Increasing
	TP	0.00	-0.37	0.00	Significantly Decreasing
11B	NOx	0.00	-0.48	0.00	Significantly Decreasing
	OP	0.00	-0.38	0.00	Significantly Decreasing
	TP	0.00	-0.51	0.00	Significantly Decreasing
	NOx	0.00	-0.25	0.03	Significantly Decreasing
Pump	OP	0.00	-0.26	0.03	Significantly Decreasing
	TP	0.00	-0.26	0.02	Significantly Decreasing
14B	NOx	0.00	-0.23	0.05	Significantly Decreasing
	Copper	-0.06	-0.32	0.01	Significantly Decreasing
14- Pump	NOx	0.00	0.24	0.04	Significantly Increasing
	TN	0.00	-0.24	0.00	Significantly Decreasing
	TP	0.00	-0.17	0.04	Significantly Decreasing
19B	TSS	-0.05	-0.20	0.01	Significantly Decreasing
	NOx	0.00	-0.34	0.00	Significantly Decreasing
	TKN	0.00	-0.21	0.01	Significantly Decreasing
	Chl-a	0.05	0.25	0.00	Significantly Increasing
1SE-B	NOx	0.00	-0.18	0.04	Significantly Decreasing
	Copper	-0.23	-0.19	0.03	Significantly Decreasing
	TN	-0.01	-0.28	0.00	Significantly Decreasing
20B	TSS	-0.08	-0.17	0.04	Significantly Decreasing
	TKN	-0.01	-0.29	0.00	Significantly Decreasing
	TN	-0.01	-0.31	0.00	Significantly Decreasing
22B	TKN	-0.01	-0.33	0.00	Significantly Decreasing
	OP	0.00	0.19	0.02	Significantly Increasing
26B	Copper	-0.65	-0.31	0.00	Significantly Decreasing
_	TP	0.00	-0.32	0.00	Significantly Decreasing
2B	OP	0.00	-0.30	0.00	Significantly Decreasing
	TP	0.00			Significantly Decreasing
3B	Copper	-0.03	-0.19	0.02	Significantly Decreasing
	ID 10B 11B 11- Pump 14B 14- Pump 19B 19B 1SE-B 20B 22B 26B 2B	IDParameterIDChl-aNOxNOxNH4TKNOPOP118NOxOPOP11-NOxOPOP11-NOxOPOP14-NOxCopperCopper14-NOxPumpTN19BTSSNOxTKNChl-aNOx1SE-BNOxCopperTKN20BTSSTKNCopper20BTSSTKNOP20BTSSTKNOP20BTSSTKNOP20BTSSTKNOP20BTN20BTN20BTN3BTP	IDParameterSlopeChl-a-0.19NOx0.00NOx0.00TKN0.00TKN0.00OP0.000OP11BNOx0OP0.00OP11-TP0.00OP0.00OP0.00OP0.00OP11-NOx0.00OP0.00OP0.00OP0.00OP0.00OP0.00OP0.00OP14BNOx0.00Copper14BNOx0.00TFN0.00TKN0.00TKN19BTSS0.00Copper1SE-BNOx0.01TKN20BTKN7KN-0.0122BTKN0.00OP28OP0.00OP38TP	IDParameterSlopeTauChl-a-0.19-0.24NOx0.000.2710BNH40.000.33TKN0.00-0.24OP0.000.24OP0.000.24MNOx0.00-0.38TP0.00-0.38OP0.00-0.38PumpOP0.00-0.51NOx0.00-0.25OP0.00-0.26MOX0.00-0.26MOX0.00-0.26OP0.00-0.2614BNOx0.00-0.2314-NOx0.00-0.24PumpON0.00-0.24TP0.00-0.24MOX0.00-0.2514PNOx0.00-0.24PumpTN0.00-0.24TP0.00-0.24MOX0.00-0.24MOX0.00-0.24MOX0.00-0.24MOX0.00-0.24MOX0.00-0.24TP0.00-0.17TKN0.00-0.24MOX0.00-0.24MOX0.00-0.24MOX0.00-0.24MOX0.00-0.24MOX0.00-0.24MOX0.00-0.24MOX0.00-0.24MOX0.00-0.31MOX0.00-0.31MOX0.00 <td>IDParameterStopeTaup-valueNo-0.19-0.240.03NOX0.000.270.02NNX0.000.330.01TKN0.00-0.240.03OP0.000.240.04TF0.00-0.370.00118NOx0.00-0.480.00OP0.00-0.480.0011-OP0.00-0.510.00PumpOP0.00-0.260.03OP0.00-0.260.030.0114-NOx0.00-0.260.02148NOx0.00-0.230.05Copper-0.06-0.320.0114-NOx0.00-0.240.04PumpNOx0.00-0.240.04148NOx0.00-0.240.04198TN0.00-0.240.04198TS-0.05-0.200.01198TN0.00-0.240.00198TKN0.00-0.240.00198TKN0.00-0.240.00199NOx0.00-0.240.00100TKN0.00-0.240.00101NOx0.00-0.240.001020.01-0.230.010.011030.00-0.240.00-0.16104SS-0.050.250.00105<</td>	IDParameterStopeTaup-valueNo-0.19-0.240.03NOX0.000.270.02NNX0.000.330.01TKN0.00-0.240.03OP0.000.240.04TF0.00-0.370.00118NOx0.00-0.480.00OP0.00-0.480.0011-OP0.00-0.510.00PumpOP0.00-0.260.03OP0.00-0.260.030.0114-NOx0.00-0.260.02148NOx0.00-0.230.05Copper-0.06-0.320.0114-NOx0.00-0.240.04PumpNOx0.00-0.240.04148NOx0.00-0.240.04198TN0.00-0.240.04198TS-0.05-0.200.01198TN0.00-0.240.00198TKN0.00-0.240.00198TKN0.00-0.240.00199NOx0.00-0.240.00100TKN0.00-0.240.00101NOx0.00-0.240.001020.01-0.230.010.011030.00-0.240.00-0.16104SS-0.050.250.00105<

Table 3-11. Significant trends in copper and nutrient parameters identified by Mann-Kendall trend tests

Continued next page

Lake	Station ID	Parameter	Sen's Slope	Tau	<i>p</i> -value	Trend
		TN	-0.01	-0.24	0.00	Significantly Decreasing
	ake 5B	TP	0.00	-0.36	0.00	Significantly Decreasing
Lake		NOx	0.00	-0.25	0.00	Significantly Decreasing
Suzanne	JD	TKN	0.00	-0.19	0.02	Significantly Decreasing
		OP	0.00	-0.17	0.04	Significantly Decreasing
		Copper	0.06	0.20	0.02	Significantly Increasing
		TN	-0.01	-0.46	0.00	Significantly Decreasing
Mandarin	6B	TP	0.00	-0.22	0.04	Significantly Decreasing
Lake	OD	TSS	-0.04	-0.27	0.01	Significantly Decreasing
		TKN	-0.01	-0.45	0.00	Significantly Decreasing
		TP	0.00	-0.32	0.00	Significantly Decreasing
South Lake	9B	OP	0.00	-0.22	0.01	Significantly Decreasing
		Copper	-0.05	-0.22	0.01	Significantly Decreasing
Public Works Pump	PW- Pump	Copper	-0.05	-0.36	0.00	Significantly Decreasing

Table 3-12. Significant trends in *Enterococci* and fecal coliform by Mann-Kendall trend tests

Lake	Station ID	Parameter	Sen's Slope	Tau	<i>p</i> -value	Trend
Alligator Lake	10B	Enterococci	1.52	0.23	0.05	Significantly Increasing
Sun Lake Terrace	15B	Enterococci	2.31	0.22	0.04	Significantly Increasing
Fleischmann Lake	19B	Enterococci	-4.69	-0.23	0.00	Significantly Decreasing
Devils Lake	1SE-B	Enterococci	-0.74	-0.22	0.01	Significantly Decreasing
		Enterococci	1.60	0.21	0.01	Significantly Increasing
Forest Lake	20B	Fecal Coliform	4.55	0.26	0.01	Significantly Increasing
Lake Manor	22B	Fecal Coliform	3.89	0.27	0.00	Significantly Increasing
NCH Lake	26B	Enterococci	-4.55	-0.18	0.03	Significantly Decreasing
Colonnade Lake	3B	Enterococci	-2.00	-0.20	0.02	Significantly Decreasing
North Lake	8B	Fecal Coliform	15.58	0.30	0.01	Significantly Increasing
		Enterococci	1.82	0.19	0.02	Significantly Increasing
South Lake	9B	Fecal Coliform	2.67	0.25	0.01	Significantly Increasing

Lake	Station ID	Parameter	Sen's Slope	Tau	<i>p-</i> value	Trend
East Lake	11B	Chl-a	0.67	0.93	0.00	Significantly Increasing
Devils Lake	1SE-B	Chl-a	0.29	0.84	0.01	Significantly Increasing
Lake Manor	22B	Chl-a	0.33	0.64	0.04	Significantly Increasing

Table 3-13. Waterbodies with significant increasing trends in maximum annual Chl-a concentrations

3.5. Correlation Analysis

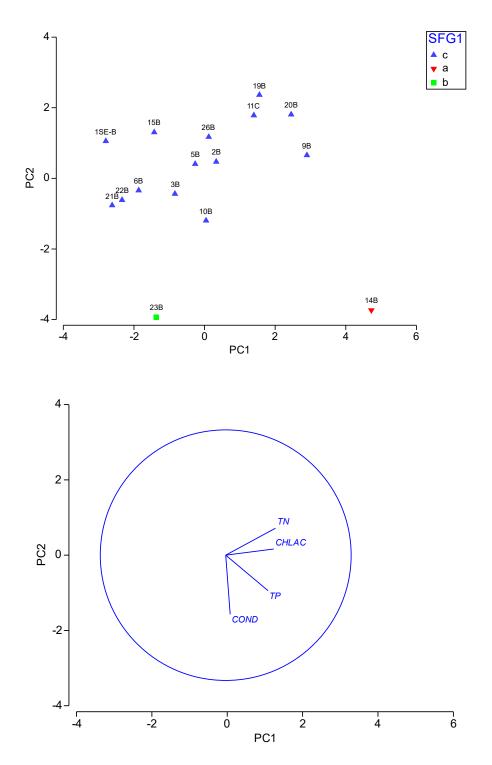
The full results of the correlation analysis are included in **Appendix C** for both the full POR and the October 2020 – September 2021 sampling program. Significant results from the October 2020 – September 2021 program, with a focus on nutrient, bacteria, and Cu correlations with precipitation, by lake, are included in **Table 3-14**. Precipitation correlations with DOC, TOC, and color are also emphasized in this section because they can be indicative of inputs from less forested areas. Areas with vegetation would increase carbon derived from plant matter and debris. Precipitation was commonly positively correlated with bacteria, indicating rainfall runoff as a potential source and transport mechanism of bacteria to and/or in the stormwater lakes. Cu was often negatively correlated with precipitation, potentially a dilution effect in cases where the source of Cu was from algaecide applied to lakes. Both positive and negative precipitation correlations were observed for nutrients, indicating that the relationships between nutrient concentrations and precipitation are dependent on nutrient and lake-specific factors. Positive correlations between nutrients and rainfall may be due to 1) increased runoff of nutrients into the lakes, and/or 2) increased sediment nutrient flux rates that occur when the water column is diluted with lower concentrations. The negative correlation between carbon-related parameters and rainfall may indicate potential dilution of carbon-containing compounds from watersheds with limited forested areas.

Table 3-14. Statistically Significant Water Quality Correlations for Select Parameters with Precipitation forNaples Stormwater Stations, October 2020 – September 2021. Positive correlations with rainfall andtemperature and negative correlations with salinity, conductivity and hardness not included.

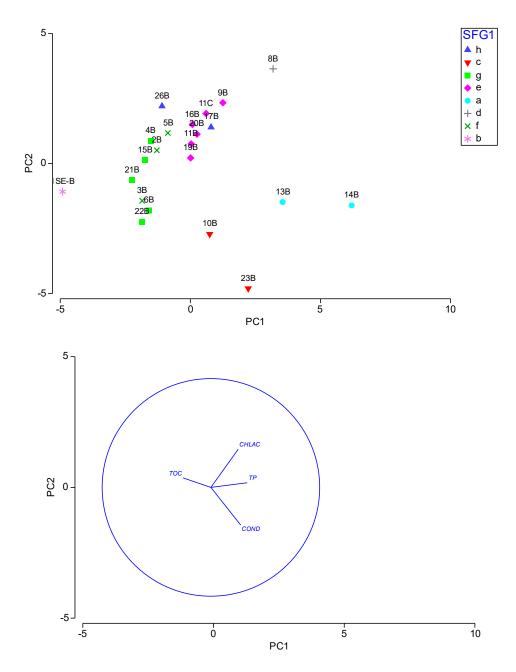
Lake (Station ID)	Rainfall	Positive Correlations	Negative Correlations		
Devil's Lake	7-Day Rain	OP, NH4, TP	TOC, Color, DOC		
	30-Day Rain	OP	Color, DOC, DO		
Swan Lake	7-Day Rain	NH4	Copper, DOC, TOC		
	30-Day Rain	-	TKN, TN, DOC, TOC		
Colomada Lolia	7-Day Rain	-	TOC		
Colonnade Lake	30-Day Rain	_	DO		
Hidden Lake	7-Day Rain	-	TOC, DOC, Color		
	30-Day Rain	-	-		
Lake Suzanne	7-Day Rain	Entero, NH4, <i>E. coli</i>	Color, DOC, TKN, TN		
	30-Day Rain	E. coli	OP, TP, Color, Copper, DOC		
Mandarin Lake	7-Day Rain	TSS, Temp, <i>E. coli,</i> Entero, NOx	TOC, Copper		
	30-Day Rain	TSS, Chl-a	Copper		

Continued next page

Lake (Station ID) Rainfall		Positive Correlations	Negative Correlations		
North Lake	7-Day Rain	_	DO, DO Saturation, TOC		
	30-Day Rain	-	DO		
South Lake	7-Day Rain	-	Copper, DOC		
	30-Day Rain	Entero	Copper, TSS		
Alligator Lake	7-Day Rain	Turbidity, TKN, pH, Chl-a	-		
	30-Day Rain	TKN, TN, Chl-a	-		
East Lake	7-Day Rain	NH4, Entero	Color, pH		
	30-Day Rain	-	рН		
Spring Lake	7-Day Rain	-	TOC, Color, Copper		
	30-Day Rain	E. coli	TOC, Copper, pH, DO, DO Saturation		
Lake 13	7-Day Rain	-	DOC		
	30-Day Rain	-	-		
	7-Day Rain	Entero, TKN, TN, Turbidity,	-		
Lantern Lake	30-Day Rain	Chl-a, Entero, TKN, TN, Turbidity	OP		
Sun Terrace Lake	7-Day Rain	NH4	DO, DO Saturation		
	30-Day Rain	Entero, OP, NH4	DO, DO Saturation, Copper		
Thurner	7-Day Rain	-	DO, DO Saturation		
	30-Day Rain	TP, E. coli	-		
Lake Diana	7-Day Rainfall	-	-		
	30-Day Rainfall	Chl-a, TKN, TP	Copper, Hardness		
Fleischmann Lake	7-Day Rain	Entero	TOC		
	30-Day Rain	Entero	-		
Forest Lake	7-Day Rain	OP	DO, DOC		
	30-Day Rain	ChI-a	Copper, DO, TOC		
Willow	7-Day Rain	Entero	DO, Copper		
	30-Day Rain	-	DO, DO Saturation, Copper, pH		
Lake Manor	7-Day Rain	Chl-a, Entero	TOC, OP		
	30-Day Rain	Chl-a, Entero	рН		
Lowdermilk	7-Day Rain	TKN	Conductivity		
	30-Day Rain	Entero, TKN, TN	Conductivity		
NCH Lake	7-Day Rain	Entero, NOx	DO Saturation, Color, TSS, TOC, TKN, TN, Coppe pH		
	30-Day Rain	-	Color, Copper, pH		


3.6. Multivariate Analysis

A combination of cluster analysis and principal components analysis was used to explore differences in water quality among lakes. Analyses were conducted on two datasets: One on the full POR from 2014 through 2021, and the second for lake data collected 2020-2021. The PCA ordination plots based on Euclidean distances in average water quality data clearly illustrated these differences, as described below:


• Full dataset (2014-2021): Cluster analyses suggested three groupings among the lakes (p < 0.05) (**Figure 3-18**):

- Lantern Lake (14B) was one group (group a), Lowdermilk Lake (23B) was a second group (group b), and the remaining lakes clustered into a third group (group c).
- The clustering into three groups was driven by differences in specific conductance and total phosphorus. For example, higher levels of specific conductance in Lowdermilk Lake (23B) drove Lowdermilk Lake (23B) to partition from the rest of the lakes. And Lantern Lake (14B) was separated from other lakes based on the overall higher TP concentrations.
- Lakes in group c appear to orient along a TN gradient, which would infer that those lakes have similar patterns and behaviors for TN.
- Water quality for one-year study, data collected by Wood, 2020-2021 (Figure 3-19):
 - Cluster analyses suggested eight groupings among the lakes (p < 0.05)
 - Lakes separated into high TOC, high Chl-a and differences driven by:
 - TOC and TP for horizontal axis (PC1)
 - Specific conductance and Chl-a for the second axis (PC2)

Overall, the multivariate analyses of water quality separated lakes into three groups for the 2014-2021 data, and eight groups for the 2020-2021 data. The differences among the lakes were driven by specific conductance, ChI-a, TP, and TOC. The differences between the PCAs can be explained by the fact that different water quality data were used, as well as different set of lakes (the POR and 2020-2021 datasets). Greater number of lake groupings were found in the 2020-2021 data collected by Wood—this was a result of a greater number of water quality parameters sampled during 2020-2021 (18) compared to the 14 parameters available for the full POR – resulting in clearer separation among the lakes. These results are in general agreement with the univariate results. For example, Lantern Lake (14B) was clearly different in the PCA (Figure 3-18), driven by ChI-a and TP, as shown in Figures 3-3 and 3-11. In the longer-term PCA (Figure 3-19), Lantern Lake (14B) was furthest along the TP gradient, and had one of the highest TP concentrations (Figure 3-11). Specific conductance was also a strong differentiator among the lakes, and Lowdermilk Lake (23B) clearly was different than the other lakes, in terms of this parameter (Appendix B).

Figure 3-18. Principal components analyses ordination illustrating (dis)similarities in water quality for stormwater lakes from December 2014 through September 2021. Notes: Data based on averages of monthly sampling. Top plot: PCA ordination. Lakes with different colors were significantly different (p < 0.05) in water quality, based on hierarchical cluster analysis (SFGI). Bottom: Vector plot for influential water quality parameters. The length of the line indicates the strength of the association. Note: Vector labels include: TN = total nitrogen; CHLAC = chlorophyll-a; TP = total phosphorus; COND = specific conductance.

Figure 3-19. Principal components analyses plot of stormwater lakes for data by Wood from October 2020 through September 2021. Notes: Top plot: PCA ordination. Lakes with different colors were significantly different (p < 0.05) in water quality, based on hierarchical cluster analysis (SFGI). Bottom: Vector plot for influential water quality parameters. The length of the line indicates the strength of the association. Note: Vector labels include: TOC = total organic carbon; CHLAC = chlorophyll-a; TP = total phosphorus; COND = specific conductance.

3.7. Impairment Assessment

Stormwater lake water quality data were compared to the non-applicable FDEP criteria of the downstream waterbodies. These comparisons incorporate both site specific criteria for Chl-a, TN and TP (which vary based on Estuary Nutrient Region) as well as impairments of downstream waterbodies. Additionally, an evaluation of the Chl-a data was completed to identify waterbodies with the highest long-term Chl-a concentrations. This evaluation included comparing Chl-a data to the natural freshwater lakes criteria and identifying individual years (and individual samples) of high Chl-a concentrations. It also incorporated a trend test to identify if any waterbodies' highest annual Chl-a concentration is increasing over time.

3.7.1. Potential Impacts to Downstream Waters

Stormwater lake data collected over the long-term POR as well as data from October 2020 - September 2021 were compared to the downstream criteria for the selected parameters. Water quality criteria do not apply to the stormwater lakes, from a regulatory perspective. The downstream waterbody criteria are described in **Section 1.2.2**; with regulatory criteria included in **Table 1-6**.

Over the long-term POR, all lakes except for Devils Lake, Lowdermilk Lake and Hidden Lake had higher Chla and TN AGMs than the downstream criteria in all years (**Table 3-15**). Similarly, only 6 of the 22 lakes did not have higher TP AGMs than the downstream criteria in all years. In the Gordon River basin, NCH Lake and Sun Lake Terrace have long periods of record with the majority (\geq 77%) of Cu samples exceeding the criteria. In the Naples Bay basin, the only station with a long POR and the majority (59%) of Cu samples above the downstream criteria is East Lake. For *Enterococci*, both NCH Lake and Fleischmann Lake have long periods of record and at least 75% of their samples are above the downstream criteria. The stormwater lakes within Naples Bay have >50% of their samples above the *Enterococci* criteria. Lake Suzanne in the Moorings Bay basin and North Lake in the Gulf of Mexico basin both have long periods of record and more than 60% of their samples above the *Enterococci* criteria. Gordon River is the only waterbody impaired for DO, and Mandarin Lake has the highest percent of samples below the 42% DO criterion, at 35% percent.

For samples collected during the previous sampling year (October 2020-September 2021), the majority of waterbodies were above the downstream criteria for Chl-a, TN, and TP (**Table 3-16**). Devils Lake was the only waterbody with a Chl-a AGM below the downstream criterion. Lowdermilk Lake, Hidden Lake, and Lake Suzanne were the only waterbodies below the downstream TN criterion while Devils Lake and Sun Lake Terrace were the only waterbodies below the downstream TP criterion. For Cu, \geq 75% of samples were above the downstream criterion in Sun Lake Terrace, NCH Lake, Devils Lake, Hidden Lake, Lake Suzanne and East Lake. All waterbodies exceeded the downstream *Enterococci* criteria at least three times throughout the October 2020-September 2021 period, while every sample from Lake Diana exceeded the criterion. Mandarin Lake stands out for having the highest percent of samples below the 42% DO criterion (83%) with Lake 13 having the next highest percent of samples below 42% DO (58%).

Station	Lake Name	No. of	Percent of No. of Samples Exceeding Downstream Criteria					
ID		Samples	CU	ENTERO	Chl-a ¹	TN ¹	TP ¹	DO
Gordon River (verified impaired for Cu, DO, ENTERO, Chl-a, and nutrients; draft not impaired for Cu)			>3.7 µg/L	>130 #/100mL	>4.3 µg/L	>0.57 mg/L	>0.045 mg/L	<42 %
15B	Sun Lake Terrace	43	77	58	100	100	43	9
16B	Thurner	12	67	75	100	100	100	33
17B	Lake Diana	12	0	100	100	100	100	33
19B	Fleischmann Lake	72	4	75	100	100	100	11
20B	Forest Lake	67	3	49	100	100	86	15
21B	Willow	12	0	67	100	100	50	33
22B	Lake Manor	67	6	45	100	100	86	24
26B	NCH Lake	67	100	88	100	100	86	13
6B	Mandarin Lake	43	7	51	100	100	100	35
Gulf of Mexico		>3.7 µg/L	>130 #/100mL	>3.1 µg/L	>0.25 mg/L	>0.04 mg/L	<42 %	
10B	Alligator Lake	37	15	32	100	100	100	11
8B	North Lake	48	42	69	100	100	100	15
9B	South Lake	67	69	54	100	100	100	6
	Moorings Bay (verified impaired for TP and draft impaired for TN)		>3.7 µg/L	>130 #/100mL	>8.1 µg/L	>0.85 mg/L	>0.04 mg/L	<42 %
1SE-B	Devils Lake	67	93	27	0	88	47	6
23B	Lowdermilk	12	42	33	100	50	92	25
2B	Swan Lake	61	60	36	100	87	88	8
3B	Colonnade Lake	67	55	52	100	89	91	10
4B	Hidden	12	92	92	100	63	75	0
5B	Lake Suzanne	67	70	63	100	80	97	7
Naples Bay (verified impaired for Chl-a and Cu, and draft impaired for Enterococci)		>3.7 µg/L	>130 #/100mL	>4.3 µg/L	>0.57 mg/L	>0.045 mg/L	<42 %	
11B	East Lake	37	59	81	100	100	100	27
11C	Spring Lake	12	67	58	100	100	100	17
13B	Lake 13	12	0	92	100	100	100	58
14B	Lantern Lake	37	45	57	100	100	100	22
24B	Half Moon Lake	25	20	96	100	100	100	40

Table 3-15. Long-term period of record percent of the number of samples not meeting the downstream criteria

Note: Yellow shading indicates downstream waterbody has been, or will soon be, impaired for this parameter. ¹ – AGMs from 2015-2021 were used for this analysis for Chl-a, TN, and TP, with the exception of Moorings Bay with Chl-a as AGM and TN and TP as mg/L.. See Table 1-6 for additional information on downstream waterbody criteria.

Station	Lake Name	Percent of No. of Samples Exceeding Downstream Criteria							
ID	Lake indiffe	CU	ENTERO	Chl-a ¹	TN ¹	TP ¹	DO		
Gordon River (verified impaired for Cu, DO, ENTERO, Chl-a, and nutrients; draft not impaired for Cu)		>3.7 µg/L	>130 #/100mL	>4.3 µg/L	>0.57 mg/L	>0.045 mg/L	< 42 %		
15B	Sun Lake Terrace	83	75	100	100	0	17		
16B	Thurner	67	75	100	100	100	33		
17B	Lake Diana	0	100	100	100	100	33		
19B	Fleischmann Lake	0	58	100	100	100	25		
20B	Forest Lake	0	58	100	100	100	8		
21B	Willow	0	67	100	100	100	33		
22B	Lake Manor	8	50	100	100	100	42		
26B	NCH Lake	100	67	100	100	100	0		
6B	Mandarin Lake	0	50	100	100	100	83		
Gulf of N	Gulf of Mexico		>130 #/100mL	>3.1 µg/L	>0.25 mg/L	>0.04 mg/L	<42 %		
10B	Alligator Lake	17	42	100	100	100	17		
8B	North Lake	25	58	100	100	100	8		
9B	South Lake	58	67	100	100	100	0		
	gs Bay (verified impaired I draft impaired for TN)	>3.7 µg/L	>130 #/100mL	>8.1 µg/L	>0.85 mg/L	>0.04 mg/L	<42 %		
1SE-B	Devils Lake	100	17	0	83	25	0		
23B	Lowdermilk	42	33	100	0	92	25		
2B	Swan Lake	67	25	100	92	75	17		
3B	Colonnade Lake	50	33	100	83	92	8		
4B	Hidden	92	92	100	42	75	0		
5B	Lake Suzanne	83	75	100	58	92	8		
Naples Bay (verified impaired for Chl-a and Cu, and draft impaired for Enterococci)		>3.7 µg/L	>130 #/100mL	>4.3 µg/L	>0.57 mg/L	>0.045 mg/L	<42 %		
11B	East Lake	75	67	100	100	100	8		
11C	Spring Lake	67	58	100	100	100	17		
13B	Lake 13	0	92	100	100	100	58		
14B	Lantern Lake	25	33	100	100	100	17		

Table 3-16. Percent of number of samples (12 samples total, October 2020-September 2021 POR) notmeeting the downstream criteria

Note: Yellow shading indicates downstream waterbody has been, or will soon be, impaired for this parameter. ¹ – One AGM calculated from samples collected between October 2020 and September 2021 were used for this analysis for Chla, TN, and TP, with the exception of Moorings Bay with Chl-a as AGM and TN and TP as mg/L.. See Table 1-6 for additional information on downstream waterbody criteria.

3.7.2. Potential Impacts to Lake Health

The FDEP determines applicable nutrient (and Chl-a) criteria by the long-term geometric mean of color for freshwater lakes in the State of Florida. However, color was only included as a parameter during this current study period (October 2020-September 2021). Nonetheless, all lakes that were sampled had geometric mean color results of greater than 40 PCU (46-163 PCU). This indicates that they fall under the category of high color lakes and the comparable natural waterbody Chl-a criteria is 20 µg/L (as an AGM). As previously mentioned, no lake in this report is considered a Water of the State, and comparisons to the criteria are for informational and comparison purposes only.

As shown in **Table 3-17** Lantern Lake, South Lake, NCH Lake, Fleischmann Lake and Half Moon Lake have all had Chl-a AGMs above 20 µg/L for all seven years of sampling, indicating higher algal concentrations in these lakes and, in natural waterbodies, these Chl-a concentrations would indicate impaired conditions. However, stormwater lakes are designed to intercept nutrient-laden runoff which can contribute to the cyclical increasing and decreasing algal populations. Additionally, these lakes have some of the highest maximum Chl-a AGMs and individual Chl-a values. Other lakes that have exceeded 20 µg/L for every year of sampling include North Lake, Lake 13, Spring Lake, Lake Diana, and Thurner Lake – however these lakes have fewer years of data (5 years of data for North Lake, 2 years of data for Lake 13, Spring Lake, Lake Diana and Thurner Lake).

Hidden Lake, Lake Manor, Lowdermilk Lake, Sun Lake Terrace and Devils Lake were the only waterbodies that have never had a Chl-a AGM over 20 μ g/L in their respective period of record. However, maximum individual Chl-a concentrations per year show statistically significant (p<0.05) increasing trends in Devils Lake and Lake Manor, indicating that these lakes may begin to experience increasing concentrations of Chl-a, indicating a potential increased chance for algal blooms.

Copper concentrations observed in the waterbodies were also compared to FDEP's water quality criteria. Similar to the analysis of Chl-a above, these copper criteria are not applicable to the stormwater ponds as they are not considered Waters of the State.

As shown in **Table 3-18** copper concentrations exceeding the criteria were observed in 11 of the 25 stormwater ponds and pump stations between October 2020 and September 2021. All 12 samples collected from NCH Lake were above the copper criteria while \geq 42% of samples from Port Royal Pump, Lowdermilk and Devils Lake were above the criteria. Exceedances were also observed in Alligator Lake, Lantern Lake, Thurner, Colonnade Lake, Hidden Lake, Lake Suzanne and North Lake.

Table 3-19 shows exceedances of the copper criteria were observed throughout the year. However January, April and October were the months with the highest number of lakes exceeding the criteria (5 lakes). December was the only month that had just one lake (NCH Lake) exceed the copper criteria.

Lake	Station ID	Count of Chl-a AGMs > 20 μg/L / Total Years of Samples ¹	Maximum Chl- a AGM (µg/L)	Maximum Individual Chl-a (µg/L)
Lantern Lake	14B	7/7	94	266
South Lake	9B	7/7	60	1,018
NCH Lake	26B	7/7	53	779
Fleischmann Lake	19B	7/7	51	252
Half Moon Lake	24B	6/6	169	255
Forest Lake	20B	5/7	93	511
North Lake	8B	5/5	78	249
Alligator Lake	10B	4/7	32	92
Lake Suzanne	5B	4/7	31	290
Swan Lake	2B	4/7	30	135
Colonnade Lake	3B	3/7	31	492
Lake 13	13B	2/2	72	177
Spring Lake	11C	2/2	48	323
Lake Diana	17B	2/2	44	83
Thurner	16B	2/2	34	51
Mandarin Lake	6B	2/7	29	80
East Lake*	11B	2/7	27	136
Willow	21B	1/2	21	63
Hidden	4B	0/2	20	38
Lake Manor*	22B	0/7	18	55
Lowdermilk	23B	0/2	17	124
Sun Lake Terrace	15B	0/7	15	41
Devils Lake*	1SE-B	0/7	7	37

Table 3-17. Waterbodies organized by highest algal abundance

* - Significant increasing trend in maximum Chl-a, see Section 3.3.1.
 ¹ – Data from 2014 were not included in this analysis as only one month of data was collected.

Lake	Station ID	Number of Exceedances	Percent Exceedance
NCH Lake	26B	12	100%
Devils Lake	1SE-B	6	50%
Port Royal Pump	14-PUMP	5	42%
Lowdermilk	23B	5	42%
Lantern Lake	14B	3	25%
Lake Suzanne	5B	3	25%
Alligator Lake	10B	2	17%
Hidden	4B	2	17%
Thurner	16B	1	8%
Colonnade Lake	3B	1	8%
North Lake	8B	1	8%
East Lake	11B	0	0%
Spring Lake	11C	0	0%
Cove Pump	11-Pump	0	0%
Lake 13	13B	0	0%
Sun Lake Terrace	15B	0	0%
Lake Diana	17B	0	0%
Fleischmann Lake	19B	0	0%
Forest Lake	20B	0	0%
Willow	21B	0	0%
Lake Manor	22B	0	0%
Swan Lake	2B	0	0%
Mandarin Lake	6B	0	0%
South Lake	9B	0	0%
Public Works Pump	PW-PUMP	0	0%

Table 3-18. Waterbodies organized by copper exceedances observed between October 2020 and September 2021.

Notes: Waterbodies with at least one copper exceedance are **bold**. For marine waters, the copper criterion is 3.7 μ g/L. In freshwater, the copper criterion is calculated based on the hardness of the water.

Month	Number of Lakes Exceeding Copper Criteria	Percent of Lakes Exceeding Copper Criteria
January	5	20%
February	3	12%
March	4	16%
April	5	20%
May	4	16%
June	2	8%
July	4	16%
August	2	8%
September	4	16%
October	5	20%
November	2	8%
December	1	4%

Table 3-19. Number and Percent of waterbodies exceeding Copper Criteria betweenOctober 2020 and September 2021.

Note: Months with at least four copper exceedances are **bold**. For marine waters, the copper criterion is 3.7 μ g/L. In freshwater, the copper criterion is calculated based on the hardness of the water.

3.8. Pump Station Pollutant Loading Estimates

Monthly loads from the three pump stations were calculated for parameters of concern (TP, TN, TSS, Cu). Total monthly pump run times were multiplied by maximum capacities for each pump to calculate volumes used in the monthly load estimates. Considering that the pumps are on variable frequency drive (which modifies pumping velocity based on pump station volume), using the maximum pump capacities likely overestimates actual volumes and loads from the pump stations. Therefore, these loads are represented as estimates of maximum loads; actual loads will vary and will likely be lower during dry periods.

The largest pollutant loads appear to be from 11-Pump. 14-Pump has the second highest TP and Cu while PW-Pump has the second highest TN and TSS loads (**Table 3-20**).

Station ID	Pump Station	Month	TP (lbs)	TN (lbs)	TSS (lbs)	Cu (lbs)
		October-20	75.6	833.7	185.6	3.73
		November-20	73.4	903.5	2509.6	1.62
		December-20	51.1	691.6	1161.7	1.34
		January-21	24.3	269.3	62.4	0.52
		February-21	33.1	224.3	79.2	0.51
11 Duran		March-21	23.5	266.8	802.3	0.41
11-Pump	Cove Pump	April-21	39.3	384.0	83.5	0.73
		May-21	19.1	216.0	44.0	0.33
		June-21	87.7	1278.3	4344.4	0.84
		July-21	126.4	1363.4	2478.9	1.76
		August-21	74.8	1012.2	259.9	0.16
		Total	628.2	7,443.0	12,011.6	12.0
		October-20	46.6	109.9	90.1	0.07
		November-20	23.3	134.6	504.6	0.36
		December-20	15.4	63.6	160.4	0.09
		January-21	10.1	46.7	52.7	0.24
		February-21	18.8	47.1	289.7	0.09
14.0	Port Royal	March-21	7.2	28.3	308.5	0.13
14-Pump	Pump	April-21	6.4	22.3	675.3	0.01
		May-21	7.7	26.4	287.0	0.06
		June-21	38.5	135.8	1917.5	0.05
		July-21	111.0	301.0	557.5	3.27
		August-21	40.3	131.7	767.8	4.01
		Total	325.3	1,047.4	5,611.1	8.4
		October-20	19.1	208.9	161.9	0.45
		November-20	13.6	199.4	126.6	0.33
		December-20	23.5	390.4	1395.2	1.65
		January-21	7.4	125.9	28.9	0.15
		February-21	4.9	76.6	148.2	0.11
PW-	Public Works	March-21	10.1	55.9	142.3	0.16
Pump	Pump	April-21	9.3	178.1	544.6	0.37
		May-21	4.6	46.2	13.3	0.05
		June-21	35.0	440.0	2557.2	0.61
		July-21	70.4	664.0	572.4	1.06
		August-21	23.1	338.0	1180.3	0.75
		Total	221.0	2,723.4	6,871.1	5.7

Table 3-20. Maximum monthly and annual pollutant loading (in pounds) from City of Naples PumpStations from October 2020 to September 2021

4.0 SUMMARY

This 2020-2021 Annual Surface Water and Pump Station Monitoring and Analysis Report included data analysis (trends, correlations, multivariate analyses, impairment assessment) for over 15 water quality parameters, 22 lakes, and three pump stations, with data spanning from 2014-2021 for some locations. To focus this summary section, select regulated parameters are summarized according to the receiving waterbody for the stormwater lakes included in the 2020-2021 monitoring program using the full POR available for each lake. The median concentrations, downstream exceedance criteria, and trends for nutrients, Chl-a, Cu, and *Enterococci* are included below in **Tables 4-1** through **4-4**. Recommendations based on the data summarized in this report are included in **Section 5.0**.

It is important to note that the FDEP water quality impairment criteria do not apply to stormwater lakes since they are manmade features and are not classified as Waters of the State. Stormwater lakes are designed to receive rainfall runoff containing nutrients and other pollutants and exceedances are expected when comparing the stormwater lakes to downstream criteria which apply to more natural waterbodies that were not designed and constructed to intercept stormwater runoff from developed lands. The comparison to downstream water quality criteria is simply a comparison tool and the downstream water quality criteria do not represent target water quality conditions in stormwater lakes. Information on stormwater lake samples with exceedances of non-applicable downstream waterbody criteria is provided to assist in managers in where to conduct additional study to support water quality improvement projects.

The marine segment of the Gordon River is on the Verified Impaired List (FDEP 2021b) for Cu, *Enterococci*, Chl-a, TN, and TP. According to the Draft Impaired List (FDEP 2021a), the marine segment is no longer impaired for Cu. Of the nine lakes discharging to the Gordon River, Thurner Lake, Lake Diana, Fleischmann Lake, and the NCH Lake stand out with generally high concentrations and high downstream criteria exceedances in many parameters (**Table 4-1**). Positive correlations with precipitation and regulated parameters were also observed in these lakes: *Enterococci* (Thurner Lake, Fleischmann Lake, and NCH Lake), TP (Thurner and Lake Diana), and Chl-a (Lake Diana). The positive precipitation correlations indicate a potential input from rainfall runoff in the stormwater lakes which subsequently discharge this runoff to the Gordon River. With impairments for TN, TP, Chl-a, Cu, and *Enterococci* in the Gordon River, the relatively high concentrations for nutrients, Chl-a, and *Enterococci* in the lakes are of potential concern but also indicate areas where water quality improvements can be targeted.

North Lake, which discharges to the Gulf of Mexico (**Table 4-2**), had generally high concentrations (compared to other lakes draining to the Gulf of Mexico) of the downstream regulated parameters and high downstream waterbody criteria exceedance percentages, with the exception of copper. In North Lake, there was also a significant positive precipitation correlation with *Enterococci*.

Naples Bay is currently on the Verified Impaired List (FDEP 2021b) for Cu and Chl-a and, according to the Draft Impaired List (FDEP 2021a), the waterbody is also impaired for *Enterococci*. Exceedances in stormwater lakes samples of parameters with Naples Bay criteria were common for nutrients and Chl-a, but less common for copper and *Enterococci*. East Lake and Lake 13 stand out in **Table 4-3**, with generally high concentrations in the parameters with downstream impairments (Chl-a, Cu, and *Enterococci*). In East Lake, precipitation was positively correlated with *Enterococci*. No correlations were observed with precipitation in Lake 13, but only one year of data were available. In Lantern Lake, which stands out in **Table 4-3** with high (compared to other lakes listed in the table) nutrients, concentration of Chl-a, *Enterococci*, TKN and TN were positively correlated with precipitation. Depending on the City's goals, the correlations with precipitation

and in-lake data potentially indicate that additional sampling and water quality improvements in East Lake, Lantern Lake, or Lake 13 may benefit Naples Bay.

Moorings Bay is currently on the Verified Impaired List (FDEP 2021b) for TP and, according to the Draft Impaired List (FDEP 2021a), the waterbody is also impaired for TN. Swan Lake (with higher median concentrations [compared to other lakes in the watershed] of TN and Chl-a and over 75% of samples exceeding downstream waterbody criteria for TN, TP, and Chl-a) and Lake Suzanne (with higher median concentrations [compared to other lakes in the watershed] of TN and TP and over 75% of samples exceeding downstream waterbody criteria for TN, TP, and Chl-a) stand out in **Table 4-4** with high concentrations and/or high downstream waterbody criteria exceedances. In Lake Suzanne, precipitation was positively correlated with *E. coli* and *Enterococci*, indicating rainfall runoff as a potential source of bacteria. Therefore, additional study may reveal water quality improvement projects in Swan Lake and Lake Suzanne that could benefit Moorings Bay.

In addition, several lakes stood out with respect to certain parameters, regardless of the potential impacts to downstream waterbodies. Overall, sampling locations that stood out with the highest average concentrations of nutrients, Chl-a, and fecal indicator bacteria include Half Moon Lake, North Lake, South Lake, and Lantern Lake. Half Moon Lake was not sampled during the 2020-2021 sampling year because it does not receive public drainage. North Lake and Lantern Lake were also identified in the discussion above as potential locations for water quality improvements that would be beneficial to downstream waterbodies.

			TN			ТР			Chl-a			CU			ENTERO	
Station ID	Lake Name	Median (mg/L)	% Downstream Exceedance	Trend	Median (mg/L)	% Downstream Exceedance	Trend	Median (ug/L)	% Downstream Exceedance	Trend	Median (ug/L)	% Downstream Exceedance	Trend	Median (#/100 mL)	% Downstream Exceedance	Trend
15B	Sun Lake Terrace	1.09	100	x	0.041	43	х	12.6	100	х	4.65	77	х	200	58	
16B	Thurner	1.37	100		0.072	100		25.5	100		4.63	67		225	75	
17B	Lake Diana	1.34	100		0.189	100		35.6	100		1.08	0		340	100	
19B	Fleischmann Lake	1.25	100	TN, NOx, TKN: ▼ NH4: x	0.072	100	TP: ▼ OP: x	30.05	100	x	0.87	4	x	370	75	▼
20B	Forest Lake	1.47	100	TN, TKN: ▼ NOx, NH4: x	0.059	86	x	30.8	100	x	0.83	3	х	130	49	
21B	Willow	1.01	100		0.049	50		16.35	100		1.12	0		270	67	
22B	Lake Manor	0.85	100	TN, TKN: ▼ NOx, NH4: x	0.076	86	TP: x OP: 🔺	15.2	100	х	1.36	6	х	110	45	х
26B	NCH Lake	1.19	100	х	0.084	86	х	29.7	100	х	43.7	100	▼	470	88	▼
6B	Mandarin Lake	0.93	100	TN, TKN: ▼ NOx, NH4: x	0.08	100	TP: ▼ OP: x	17	100	х	0.92	7	х	140	51	х

 Table 4-1.
 Summary of nutrients, Chl-a, Cu and Enterococci in Stormwater Lakes Discharging to the Gordon River, which is impaired (FDEP, 2012b) in the marine segment for TN, TP, Chl-a, Cu, and Enterococci.

 Enterococci.
 Note that according to the Draft Impaired List (FDEP 2021a), the waterbody is no longer impaired for Cu. Parameters with verified impairments shaded yellow in table.

Notes: Highest median concentration in red font, percent of downstream exceedances in red font if greater than or equal to 75%. Red trend arrow indicates significantly increasing concentration, green trend arrow indicates significantly decreasing concentration, x=trend not significant, --=insufficient data to perform trend analysis. Data from full POR (2014-2021), with the exception of Thurner, Lake Diana, and Willow which were only sampled during the October 2020 – September 2021 sampling program.

			TN	I		ТР			Chl-a			CU			ENTERO	
Station ID	Lake Name	Median (mg/L)	% Downstream Exceedance	Trend	Median (mg/L)	% Downstream Exceedance	Trend	Median (ug/L)	% Downstream Exceedance	Trend	Median (ug/L)	% Downstream Exceedance	Trend	Median (#/100 mL)	% Downstream Exceedance	Trend
10B	Alligator Lake	1.08	100	TN: x NOx, NH4: ▲ TKN: ▼	0.102	100	TP: x OP: ▲	18.3	100	▼	1.43	15	x	50	32	
8B	North Lake	1.97	100	х	0.146	100	Х	67.1	100	Х	2.94	42	х	250	69	х
9B	South Lake	1.53	100	х	0.134	100	TP, OP: 🔻	46	100	х	5.39	69	▼	150	54	

Table 4-2. Summary of nutrients, Chl-a, Cu and Enterococci in Stormwater Lakes Discharging to the Gulf of Mexico.

Notes: Highest median concentration in red font, percent of downstream exceedances in red font if greater than or equal to 75%. Red trend arrow indicates significantly increasing concentration, green trend arrow indicates significantly decreasing concentration, x=trend not significant, --= insufficient data to perform trend analysis. Data from full POR (2014-2021).

Table 4-3. Summary of nutrients, Chl-a, Cu and Enterococci in Stormwater Lakes Discharging to Naples Bay, which is impaired (FDEP, 2021b) for Chl-a and Cu, and on the Draft Impaired List (FDEP 2021a) for Enterococci. Parameters with verified or draft impairments shaded yellow in table.

	۵.		TN	l		ТР			Chl-a			CU			ENTERO	
Station ID	Lake Name	Median (mg/L)	% Downstream Exceedance	Trend	Median (mg/L)	% Downstream Exceedance	Trend	Median (ug/L)	% Downstream Exceedance	Trend	Median (ug/L)	% Downstream Exceedance	Trend	Median (#/100 mL)	% Downstream Exceedance	Trend
11B	East Lake	1.03	100	NOx: ▼ TN, TKN, NH4: x	0.08	100	TP, OP:	20.6	100	х	4.5	59	х	240	81	x
11C	Spring Lake	0.95	100		0.061	100		37.75	100		6.3	67		200	58	
13B	Lake 13	0.99	100		0.132	100		52.7	100		0.76	0		245	92	
14B	Lantern Lake	1.64	100	NOx: ▼ TN, TKN, NH4: x	0.375	100	TP: ▼ OP: x	51.4	100	х	3.07	45	▼	150	57	x

Notes: Highest median concentration in red font, percent of downstream exceedances in red font if greater than or equal to 75%. Red trend arrow indicates significantly increasing concentration, green trend arrow indicates significantly decreasing concentration, x=trend not significant, --= insufficient data to perform trend analysis. Data from full POR (2014-2021), with the exception of Spring Lake and Lake 13 which were only sampled during the October 2020 – September 2021 sampling program.

			TN			ТР			Chl-a			CU			ENTERO	
Station ID	Lake Name	Median (mg/L)	% Downstream Exceedance	Trend	Median (mg/L)	% Downstream Exceedance	Trend	Median (ug/L)	% Downstream Exceedance	Trend	Median (ug/L)	% Downstream Exceedance	Trend	Median (#/100 mL)	% Downstream Exceedance	Trend
1SE-B	Devils Lake	1.04	88	NOx: ▼ TN, TKN, NH4: x	0.039	47	x	4.41	0		14.8	93	▼	60	27	•
23B	Lowdermilk	0.63	50		0.071	92		10.1	100		0.95	42		30	33	
2В	Swan Lake	1.11	87	х	0.087	88	TP, OP:	28.3	100	х	4.12	60	х	80	36	х
3B	Colonnade Lake	1.06	89	х	0.097	91	TP: ▼ OP: x	19.3	100	х	3.92	55	▼	150	52	▼
4B	Hidden	0.83	63		0.069	75		26.15	100		7.64	92		400	92	
5B	Lake Suzanne	1.11	80	TN, TKN, NOx: ▼ NH4: x	0.112	97	TP, OP:	22.4	100	х	4.82	70		210	63	x

 Table 4-4.
 Summary of nutrients, Chl-a, Cu and Enterococci in Stormwater Lakes Discharging to Moorings Bay, which is impaired (FDEP, 2021b) for TP and on the Draft Impaired List (FDEP, 2021a) for TN. Parameters with verified or draft impairments shaded yellow in table.

Notes: Highest median concentration in red font, percent of downstream exceedances in red font if greater than or equal to 75%. Red trend arrow indicates significantly increasing concentration, green trend arrow indicates significantly decreasing concentration, x=trend not significant, --= insufficient data to perform trend analysis. Data from full POR (2014-2021), with the exception of Lowdermilk and Hidden Lakes during the October 2020 – September 2021 sampling program.

5.0 RECOMMENDATIONS

The City of Naples is dedicated to improving water quality conditions in City stormwater lakes. For example, the City is currently conducting lake restorations at Lakes 11, 19, and 31 that began in August 2021. The recommendations provided below include additional data collection and analysis to support the development of water quality improvement projects and a discussion of effective water quality improvement technologies that can be employed for improving the water quality of stormwater runoff into and out of the City's stormwater lakes.

5.1. Recommended Analyses

Pollutant load modeling is a desktop analysis, assuming drainage basin delineations are sufficiently detailed and permit coverages for existing stormwater treatment systems are available. This modeling can be supplemented by additional sampling at lake inflows and lake outflows to quantify in-lake processes (i.e., potential contributions from groundwater seepage and/or sediment flux-driven internal loading), and monitoring flows out of the lakes and sediment quality evaluations.

Pollutant load modeling is the primary recommendation because it could provide valuable data for identifying potential monitoring and water quality improvement projects. Deciding which lakes to include in a pollutant load modeling study is outside of the scope of the current project and requires assessing whether the potential projects that will be identified based on the modeling results will be targeted at inlake improvements and/or downstream waterbodies. However, an initial review of the stormwater lake data indicates that pollutant load modeling may be beneficial in the following lakes to assess projects to benefit downstream waterbodies:

- Gordon River: Thurner Lake and Lake Diana
- Naples Bay: Lake 13
- Moorings Bay: Swan Lake and Lake Suzanne

As described above, pollutant load modeling should be supplemented by monitoring lake inflows and outflows. If monitoring inflows and outflows indicates that the lake is exporting nutrients, sediment internal loading should be assessed via a sediment characterization study. Sediment characterization studies can include the following components:

- Bathymetric and sediment thickness surveys: These surveys provide information on sediment bottom elevations and soft sediment thicknesses. These surveys are typically conducted by physically sounding and probing the sediment thickness on a grid (sized according to lake size) using a 2" diameter PVC sounding pole.
- Screening level sediment characterization: Sediment grab sampling locations can be optimized based on the results of the sediment thickness survey. Grab samples should be analyzed for nutrients, metals, total organic carbon and bulk density, at a minimum.
- Hot spot identification: Hot spots, or areas with higher nutrient concentrations, can be identified at a sub-basin scale using the results of the pollutant load modeling and sediment sampling and sediment thickness surveys.
- Sediment fractionation: Sediment nutrient fractionation can be conducted on a smaller subset of samples. Nutrient fractionation can be used to estimate the different chemical states of nutrients that range from highly available and likely to release (depending on environmental conditions) to

recalcitrant (unavailable). Samples for nutrient fractionation are collected with a piston core sampler.

• Sediment flux: Sediment nutrient flux studies enable estimation of the nutrient flux rate and attributable load to the water column from the sediments. For flux studies, intact sediment cores are incubated in a laboratory under aerobic and anoxic conditions.

More in-depth pollutant source tracking methods can be incorporated as needed. These include flow-weighted stormwater sampling and isotopic analysis of water samples.

5.2. Recommended Water Quality Improvement Projects

As described previously, the stormwater lake concentration data provides valuable information, however, it does not provide pollutant loads in and out of the lakes, which are key in proposing specific projects. To understand which lakes are the highest overall load contributors, it's important to measure those loads so that projects can be designed to properly attenuate the internal and external loads combined. Measuring the internally derived loads from each lake if nutrients are found to export out of the lake is key to selecting and prioritizing projects. Once lakes or areas are targeted for projects, there are a variety of structural and non-structural Best Management Practices (BMPs) that can be employed to improve the quality of stormwater runoff.

5.2.1. Structural BMPs

Low impact development (LID) structural BMPs may be incorporated into the stormwater lake watersheds to treat nutrients (nitrogen, phosphorus or both) and other constituents of concern. Encouraging widespread LID practices in existing developments as retrofits and future redevelopments is an effective strategy to mitigate existing water quality issues, improve resiliency, and prevent future watershed degradation. The overall goals of LIDs are to "slow, spread, and soak" (i.e., to prevent excess stormwater runoff by creating upgradient storage volumes, to reduce the volume of stormwater runoff by increasing the amount of pervious area, allowing stored water to infiltrate into the groundwater, and by treating stored water (for nutrient removal) with vegetation or biosorptive activated filter media before infiltration or discharge). Storing stormwater, slowing it down, and allowing it to infiltrate lessens peak flows and reduces erosion, sedimentation, and flooding, which in turn reduces nutrient runoff inputs to lakes. Nutrient removal from surface water and groundwater contributions to the lakes can further improve water quality. A list of LID structural BMPs is provided below. Although planning a new development (or redevelopment) with LID practices is typically easier and more cost effective, the suggested BMPs can also be implemented to improve existing development.

Bioretention/Bioinfiltration: Bioretention/bioinfiltration basins (commonly referred to as rain gardens) are shallow depressions used to capture, temporarily store, treat, and infiltrate stormwater runoff. Organic mulch and soils, vegetation, and additional nutrient adsorption media facilitate pollutant removal and infiltration to the groundwater. The basins can be underlain by layers of gravel or other porous media to hold additional runoff storage volume and can be engineered with underdrains and overflow pipes or weirs, in case of emergency flooding issues. Because these BMPs can be designed and planted to fit a wide variety of applications and landscaping aesthetics, they are well-suited for use in parks and recreational areas, parking lots, or in front of schools or other public buildings. They can be planned in new developments, constructed in existing open areas, or installed privately by residents in their existing yards.

Stormwater Treatment Wetlands: Constructed for pollutant load removal, flood protection and erosion control, constructed treatment wetlands also provide habitat for wildlife. Constructed wetlands typically include a fore-bay for pre-treatment of raw influent stormwater prior to entry into the wetland portion of the system to settle out and reduce suspended solids before further treatment by the constructed wetlands. Constructed treatment wetlands can be designed to fit a wide variety of aesthetics and applications and could be implemented in parks and recreational areas, along roadways, on public lands (schools, fire stations etc.), or downstream of treated wastewater discharges (with intent to provide additional nutrient attenuation/polishing, not to replace existing wastewater treatment). Although BMPs such as bioinfiltration basins and dry ponds are designed to temporarily store water and return to dry conditions after infiltration and evapotranspiration, constructed treatment wetlands are designed to retain water levels that support wetland ecosystems and invoke biogeochemical mechanisms to treat water prior to discharge and/or infiltration. These BMPs should be implemented in areas that can hydrologically support wetlands without creating offsite flooding impacts.

Bioswales: Bioswales are shallow vegetated swales that capture runoff for stormwater conveyance and provide treatment and infiltration along with brief temporary storage. Similar to bioretention basins, bioswales can also be enhanced with underlain layers of Biosorptive activated media (BAM) and/or gravel to enhance nutrient removal, add storage capacity, and improve infiltration. Because bioswales are typically long, narrow conveyances, they are ideal for application as medians, for parking lot drainage, or along roadsides. New developments can integrally design streets and parking lots to drain to central bioswale medians, but bioswales are also highly suitable for retrofitting existing developments, especially where the City maintains existing stormwater infrastructure within the right-of-way (ROW) along roadways.

5.2.2. Nonstructural BMPs

A nonstructural BMP that could provide benefits to the stormwater lakes and downstream waterbodies is sediment management/inactivation which could provide water quality improvement gains in respect to the potential sediment internal cycling load from contributing lakes. If additional investigation into the potential sediment related loads from lakes finds that loads are extensive, the City may consider sediment inactivation projects using innovative and highly cost-effective sediment capping products such as Phoslock or Virophos. Wood has repeatedly tested these products on the bench and mesocosm scales and have found between 80-95% reduction of phosphorus loading from the sediment when the product is applied to the top of the sediment as a chemical inactivation cap. Virophos was also found to remove around 50% of nitrogen. The products have both been tested by the manufacturers, distributors and academia and were found to be non-toxic and safe for organisms in the benthos and elsewhere in the waterbody and ecosystem. Additional toxicity information is available from each of the manufacturers (SePRO for Phoslock and Enviremed for Virophos). Phoslock has been approved and permitted to be applied to several lakes in Florida on a whole lake basis (Pine Lake and Prima Vista Lake). Virophos has not yet been applied at a whole-lake scale and has only been applied during a mesocosm study (Crystal Lake in City of Lakeland) by Wood, and the experimental study is still underway. Additional toxicity information will be available upon completion of the mesocosm study. Full scale application of these products need to be permitted if the lake is a natural waterbody. It is likely that the stormwater lakes may fall under a permit exemption, but an application would be needed to confirm this assumption based on previous experience by Wood. It is unknown if outside entities have tested for toxicity or public health concerns. However, the products have been shown to be safe and non-toxic with the available information at the time of this report. The lifespan of the products and application dosing and frequency is entirely based on the site-specific nature of the sediment profile characteristics and additional ongoing inflows. Therefore, a site-specific assessment would be needed to provide a dosing rate, frequency and schedule once a sediment characterization is completed

for each lake that has an expected sediment nutrient load issue. Wood understands that this is a relatively new technology and City staff are encouraged to seek out additional information on sediment inactivation products as they become available.

Public outreach regarding fertilizer use may also be beneficial. Nutrient runoff from nonpoint sources such as fertilizer contributes to algae blooms, anoxia, and biodiversity loss in aguatic environments (Yang and Toor, 2016), and Jani et. al (2020) reported that stormwater runoff is a leading source of nitrogen to waterbodies. In particular, the application of fertilizer to grass lawns and sports/recreational fields/courses have been recognized as an important source of nitrogen and phosphorus pollution in urban areas (Souto et al., 2019; Yang and Toor, 2016; Yang and Toor, 2017; Krimsky et al., 2021), via stormwater runoff and over application of fertilizer which can result in nitrogen leaching through the root zone during infiltration. As such, municipal and county governments throughout Florida have enacted restrictions on residential fertilizer use as part of water quality restoration efforts (Krimsky et al. 2021). Quantifying the success of these programs at improving water quality is difficult because of the numerous sources of nutrients (e.g., atmospheric deposition, septic/wastewater/reclaimed, pet waste, yard clippings) in addition to fertilizers (Yang and Toor, 2016; Yang and Toor, 2017; Krimsky et al., 2021) and landscape differences (Krimsky et al. 2021). However, residential fertilizers are large contributors to nutrient concentrations in urban runoff (Yang and Toor, 2016; Yang and Toor, 2017; Krimsky et al., 2021). Krimsky et al. (2021) reported that the source and concentration of these nutrients are influenced by homeowner fertilizer behavior and recommended that nutrient management should include outreach and education. As described earlier in Section 1.2.1, the City of Naples has a fertilizer ordinance⁶ and web-based outreach materials. Landscape companies are also required to complete the Green Industries Best Management Practices certification provided through the State—an initiative that was started within the City of Naples' and grew statewide based on these efforts. The addition of public outreach staff within the City would allow for the expansion of outreach efforts to landscape companies and Homeowners Associations, for example. Other initiatives to supplement ongoing efforts could contribute to a targeted outreach or education campaign. Outreach may be a useful tool for lakes receiving only private discharge, like Half Moon Lake, which was monitored in previous City sampling programs and had high concentrations of nutrients and Chl-a. Outreach would also be an opportunity for the City to further educate residents on Florida-Friendly landscaping with low maintenance plants, keeping grass clippings out of stormwater lakes, and adjusting fertilizer use if irrigating with reclaimed water. Moreover, potentially enhancing restrictions via fertilizer and other ordinances that increase water quality protection are highly recommended.

⁶ Fertilizer Use and Maintenance of Landscapes, City of Naples, available at: https://www.naplesgov.com/fertilizer, accessed 2021-07-23.

6.0 REFERENCES

Amec. 2012. City of Naples Stormwater Quality Analysis, Pollutant Loading and Removal Efficiencies.

Amec. 2014. City of Naples Semi-Annual and Quarterly Stormwater Infrastructure Monitoring Final Report, March 2014.

Angradi, T. R., P. L. Ringold, and K. Hall. 2018. Water clarity measures as indicators of recreational benefits provided by U.S. lakes: Swimming and aesthetics. Ecological Indicators 93: 1005-1019.

Campbell, K. R. (1994). Concentrations of heavy metals associated with urban runoff in fish living in stormwater treatment ponds. Archives of environmental contamination and toxicology, 27(3), 352-356.

Cardno. 2020. Naples Bay Water Quality and Biological Analysis Report.

Clarke, K.R., Gorley, R.N., Somerfield, P.J., Warwick, R.M. 2014. Change in marine communities: an approach to statistical analysis and interpretation, 3rd ed. PRIMER-E: Plymouth.

Craven, A. M., Aiken, G. R., & Ryan, J. N. (2012). Copper (II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model. Environmental science & technology, 46(18), 9948-9955.

Environmental Protection Agency [EPA]. (2007). Aquatic Life Ambient Freshwater Quality Criteria – Copper. EPA-8220R-07-001, 2007 Revision.

Florida Department of Environmental Protection (FDEP). 2021a. 2020-2022 Biennial Assessment Draft Verified and Delist Lists. https://floridadep.gov/dear/watershed-assessment-section/content/2020-2022-biennial-assessment-draft-verified-and-delist.

FDEP. 2021b. Statewide Comprehensive Verified List of Impaired Waters. https://floridadep.gov/dear/watershed-assessment-section/documents/comprehensive-verified-list.

FDEP. 2013. Implementation of Florida's Numeric Nutrient Standards. Tallahassee (FL): Florida Department of Environmental Protection (DEP)

FDEP. 2010. FDEP's DRAFT Environmental Resource Permit Stormwater Quality Applicant's Handbook, Design Requirements for Stormwater Treatment Systems in Florida (March 2010)

FDEP. 2007. Evaluation of Current Stormwater Design Criteria within the State of Florida, June 2007.

Flemming, C. A., & Trevors, J. T. (1989). Copper toxicity and chemistry in the environment: a review. Water, Air, and Soil Pollution, 44(1), 143-158.

Hoyer, M. V., C. D. Brown, and D. E. Canfield Jr. 2004. Relations between water chemistry and water quality as defined by lake users in Florida. Lake and Reservoir Management 20(3): 240-248.

Kassambara, A. (2021). rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7. 0.

Krimsky LS, MG Lusk, H Abeels, L Seals. 2021. Sources and concentrations of nutrients in surface runoff from waterfront homes with different landscape practices. Science of the Total Environment, 750: 42320. doi: https://doi.org/10.1016/j.scitotenv.2020.142320

Nicholls, S., & Crompton, J. 2018. A comprehensive review of the evidence of the impact of surface water quality on property values. Sustainability, 10(2), 500.

Lifset, R. J., Eckelman, M. J., Harper, E. M., Hausfather, Z., & Urbina, G. (2012). Metal lost and found: dissipative uses and releases of copper in the United States 1975–2000. Science of the total environment, 417, 138-147.

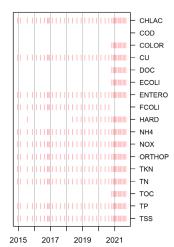
Lusk, M. G., & Chapman, K. (2020). Copper concentration data for water, sediments, and vegetation of urban stormwater ponds treated with copper sulfate algaecide. Data in brief, 31, 105982.

Rader, K. J., Carbonaro, R. F., van Hullebusch, E. D., Baken, S., & Delbeke, K. (2019). The fate of copper added to surface water: field, laboratory, and modeling studies. Environmental toxicology and chemistry, 38(7), 1386-1399.

Souto, L.A.; C. M.C.S. Listopad, P.J. Bohlen. 2019. Forging linkages between social drivers and ecological processes in the residential landscape. Landscape and Urban Planning: 185: 96-106.

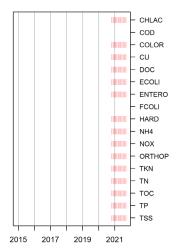
Wood. 2019. 2019 Update to the City of Naples Stormwater Lakes Management Plan. Prepared for the City of Naples.

Wagner, J. L., Townsend, A. K., Velzis, A. E., & Paul, E. A. (2017). Temperature and toxicity of the copper herbicide (NautiqueTM) to freshwater fish in field and laboratory trials. *Cogent Environmental Science*, *3*(1), 1339386.

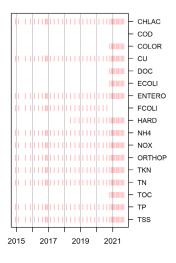

Walsh, P. J., Milon, J. W., & Scrogin, D. O. 2011. The spatial extent of water quality benefits in urban housing markets. Land Economics, 87(4), 628-644.

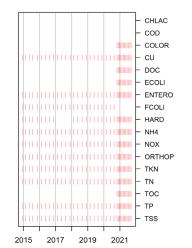
Yang YY & Toor GS. 2016. δ15N and δ18O reveal the sources of nitrate-nitrogen in urban residential stormwater runoff. Environmental Science & Technology, 50: 2881-2889. doi: 10.1021/acs.est.5b05353

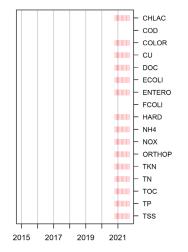
Yang YY & Toor GS. 2017. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. Water Research, 112: 176-184. doi: 10.1016/j.watres.2017.01.039

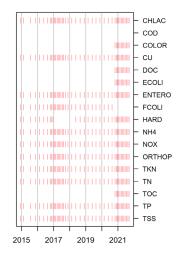

wood.

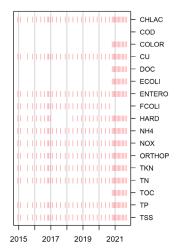
Station 10B

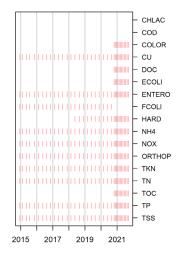


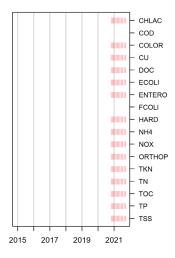




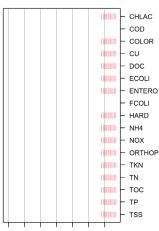



Station 13B

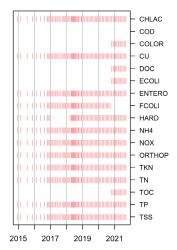

Station 15B


Station 11B

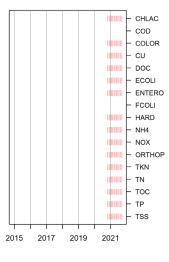
Station 14-PUMP

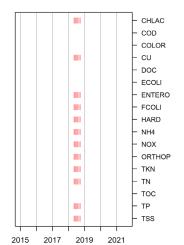


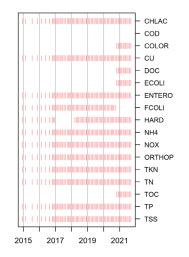
Station 16B

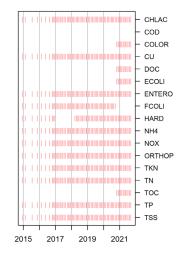

wood.

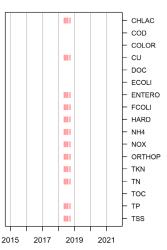
Station 17B

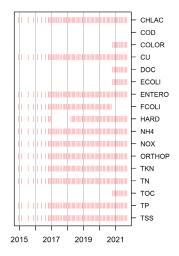


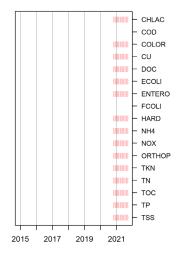




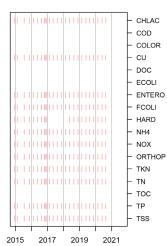

Station 19A-NC


Station 1SE-B

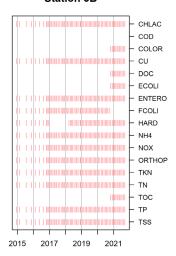

Station 22B


Station 19A-SW

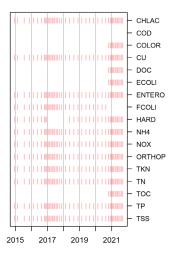
Station 20B

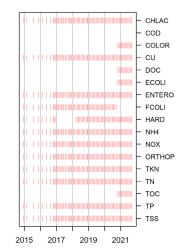


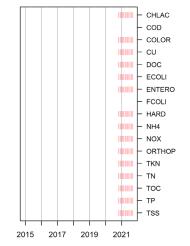
Station 23B

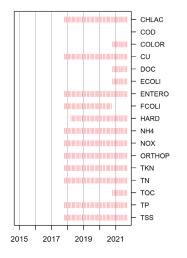


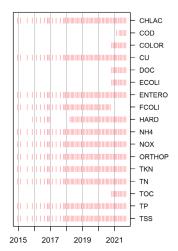
wood.

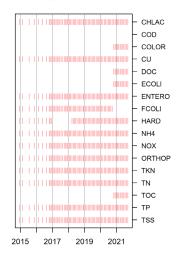

Station 24B

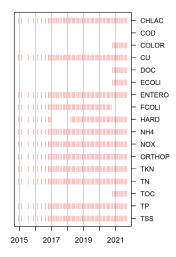

Station 3B


Station 6B






Station 8B


Station 2B

Station 5B

Station 9B

Appendix B – Water Quality Summary Statistics for Naples Stormwater Stations

Drainage								POR					FY20-21	(October 20)	20-Septer	nber 2021)
Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Fleischmann Lake	19A-NC	Chlorophyll-a, Corrected	18-May	18-Sep	10	25.5	32.7	0.3	52.9	19.4	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Conductivity	18-May	18-Sep	10	767	633	452	2063	479	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Copper	18-May	18-Sep	10	4.11	1.92	0.72	20.60	5.94	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Dissolved Oxygen	18-May	18-Sep	10	3.00	2.38	1.49	7.03	1.74	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Dissolved Oxygen, Saturation	18-May	18-Sep	10	39.1	30.7	18.2	89.1	22.3	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Enterococci	18-May	18-Sep	10	2994	1010	270	13600	4017	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Fecal Coliform	18-May	18-Sep	10	3269	825	5	20000	6151	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Total Hardness, CaCO3	18-May	18-Sep	10	199.6	165.0	96.4	498.0	118.8	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Ammonia	18-May	18-Sep	10	0.18	0.00	0.00	0.67	0.26	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Nitrate+Nitrite	18-May	18-Sep	10	0.11	0.06	0.02	0.59	0.17	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Orthophosphate	18-May	18-Sep	10	0.09	0.02	0.01	0.62	0.19	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	рН	18-May	18-Sep	10	8.3	8.2	7.4	11.2	1.1	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Salinity	18-May	18-Sep	10	0.38	0.31	0.22	1.05	0.25	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Temperature	18-May	18-Sep	10	28.0	28.6	22.7	31.2	2.7	-	-	-	-	-	-

Drainage								POR					FY20-21	October 202	20-Septen	nber 2021)
Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Fleischmann Lake	19A-NC	Total Kjeldahl Nitrogen	18-May	18-Sep	10	1.63	1.49	1.02	3.32	0.62	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Total Nitrogen	18-May	18-Sep	10	1.74	1.57	1.04	3.35	0.62	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Total Phosphorus	18-May	18-Sep	10	0.18	0.08	0.04	1.08	0.32	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Total Suspended Solids	18-May	18-Sep	10	18.8	16.9	5.6	36.0	10.3	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NC	Turbidity	18-May	18-Sep	10	8.7	7.2	3.8	17.2	5.0	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Chlorophyll-a, Corrected	18-May	18-Sep	10	21.8	30.5	0.1	46.9	19.1	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Conductivity	18-May	18-Sep	10	707	544	430	2202	535	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Copper	18-May	18-Sep	10	1.90	1.11	0.17	8.55	2.49	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Dissolved Oxygen	18-May	18-Sep	10	5.89	6.18	3.62	8.03	1.52	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Dissolved Oxygen, Saturation	18-May	18-Sep	10	76.0	80.6	48.5	100.3	18.2	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Enterococci	18-May	18-Sep	10	762	575	10	2900	868	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Fecal Coliform	18-May	18-Sep	10	1013	110	5	5900	1868	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Total Hardness, CaCO3	18-May	18-Sep	10	203.2	151.0	102.0	672.0	167.0	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Ammonia	18-May	18-Sep	10	0.15	0.00	0.00	0.61	0.24	-	-	-	-	-	-

Drainage								POR					FY20-21	(October 20	20-Septer	nber 2021)
Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Max	SD
Gordon River	Fleischmann Lake	19A-NW	Nitrate+Nitrite	18-May	18-Sep	10	0.04	0.03	0.01	0.09	0.02	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Orthophosphate	18-May	18-Sep	10	0.02	0.02	0.00	0.05	0.02	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	рН	18-May	18-Sep	10	9.1	8.2	7.8	11.6	1.5	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Salinity	18-May	18-Sep	10	0.35	0.26	0.20	1.12	0.28	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Temperature	18-May	18-Sep	10	28.7	28.7	26.4	30.5	1.4	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Total Kjeldahl Nitrogen	18-May	18-Sep	10	1.06	1.06	0.58	1.52	0.32	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Total Nitrogen	18-May	18-Sep	10	1.09	1.11	0.67	1.54	0.31	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Total Phosphorus	18-May	18-Sep	10	0.05	0.06	0.00	0.10	0.03	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Total Suspended Solids	18-May	18-Sep	10	43.9	15.5	6.0	190.0	62.2	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-NW	Turbidity	18-May	18-Sep	10	15.5	8.2	4.0	69.5	20.1	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Chlorophyll-a, Corrected	18-May	18-Sep	10	32.5	33.0	4.6	67.0	21.5	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Conductivity	18-May	18-Sep	9	657	653	478	1139	211	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Copper	18-May	18-Sep	10	3.01	1.21	0.17	13.90	4.44	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Dissolved Oxygen	18-May	18-Sep	9	2.87	2.53	1.80	4.41	0.85	-	-	-	-	-	-

Ducino do								POR					FY20-21	October 202	20-Septen	nber 2021)
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Fleischmann Lake	19A-SW	Dissolved Oxygen, Saturation	18-May	18-Sep	9	37.2	31.3	24.0	54.9	10.8	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Enterococci	18-May	18-Sep	10	477	315	80	1500	446	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Fecal Coliform	18-May	18-Sep	10	1683	310	20	10400	3272	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Total Hardness, CaCO3	18-May	18-Sep	10	154.0	149.5	101.0	206.0	32.4	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Ammonia	18-May	18-Sep	10	0.04	0.00	0.00	0.16	0.06	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Nitrate+Nitrite	18-May	18-Sep	10	0.17	0.08	0.02	0.78	0.23	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Orthophosphate	18-May	18-Sep	10	0.11	0.03	0.00	0.86	0.26	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	рН	18-May	18-Sep	9	8.0	8.0	7.1	8.9	0.7	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Salinity	18-May	18-Sep	9	0.31	0.30	0.23	0.56	0.10	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Temperature	18-May	18-Sep	9	28.4	29.1	25.4	30.4	1.8	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Total Kjeldahl Nitrogen	18-May	18-Sep	10	1.43	1.35	0.84	2.32	0.46	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Total Nitrogen	18-May	18-Sep	10	1.60	1.48	1.17	2.34	0.40	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Total Phosphorus	18-May	18-Sep	10	0.16	0.06	0.00	0.98	0.29	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19A-SW	Total Suspended Solids	18-May	18-Sep	10	17.4	8.6	2.8	96.0	27.9	-	-	-	-	-	-

Dreinere								POR					FY20-21 (C	October 20	20-Septem	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Fleischmann Lake	19A-SW	Turbidity	18-May	18-Sep	9	9.7	4.9	1.9	26.8	8.8	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19B	Calcium	20-Nov	21-Sep	11	55.55	51.50	32.70	83.80	15.61	11	55.55	51.50	32.70	83.80	15.61
Gordon River	Fleischmann Lake	19B	Chlorophyll-a, Corrected	14-Dec	21-Sep	72	37.6	30.1	2.5	252.0	34.4	12	32.3	25.9	14.4	67.9	16.6
Gordon River	Fleischmann Lake	19B	Color, Apparent	20-Oct	21-Sep	12	83	75	40	160	35	12	83	75	40	160	35
Gordon River	Fleischmann Lake	19B	Color pH	20-Oct	21-Sep	12	7.92	7.96	7.38	8.14	0.21	12	7.92	7.96	7.38	8.14	0.21
Gordon River	Fleischmann Lake	19B	Conductivity	14-Dec	21-Sep	72	552	549	414	898	72	12	559	520	449	898	117
Gordon River	Fleischmann Lake	19B	Copper	14-Dec	21-Sep	72	1.18	0.87	0.17	7.40	1.34	12	0.95	0.88	0.17	2.39	0.64
Gordon River	Fleischmann Lake	19B	Dissolved Oxygen	14-Dec	21-Sep	72	6.53	6.46	0.23	12.50	2.67	12	4.97	5.60	0.23	7.12	2.04
Gordon River	Fleischmann Lake	19B	Dissolved Organic Carbon	20-Oct	21-Sep	12	10.22	10.80	4.60	14.50	3.00	12	10.22	10.80	4.60	14.50	3.00
Gordon River	Fleischmann Lake	19B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	72	80.5	79.9	3.0	168.5	34.9	12	56.7	67.3	3.0	94.1	29.5
Gordon River	Fleischmann Lake	19B	E. coli	20-Oct	21-Sep	12	319	344	41	663	212	12	319	344	41	663	212
Gordon River	Fleischmann Lake	19B	Enterococci	14-Dec	21-Sep	72	683	370	20	10500	1496	12	225	150	20	520	168
Gordon River	Fleischmann Lake	19B	Fecal Coliform	14-Dec	20-Sep	60	725	365	5	3500	876	-	-	-	-	-	-
Gordon River	Fleischmann Lake	19B	Total Hardness, CaCO3	14-Dec	21-Sep	58	165.8	168.5	95.6	246.0	31.6	12	165.7	156.5	99.8	246.0	41.7

Drainage					-			POR					FY20-21 (C	October 20	20-Septem	nber 2021)	
Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Fleischmann Lake	19B	Magnesium	20-Nov	21-Sep	11	6.26	5.93	4.40	8.90	1.47	11	6.26	5.93	4.40	8.90	1.47
Gordon River	Fleischmann Lake	19B	Ammonia	14-Dec	21-Sep	72	0.03	0.00	0.00	0.32	0.06	12	0.05	0.03	0.00	0.14	0.05
Gordon River	Fleischmann Lake	19B	Nitrate+Nitrite	14-Dec	21-Sep	72	0.03	0.01	0.00	0.95	0.11	12	0.01	0.00	0.00	0.02	0.01
Gordon River	Fleischmann Lake	19B	Orthophosphate	14-Dec	21-Sep	72	0.03	0.02	0.00	0.12	0.03	12	0.03	0.03	0.01	0.06	0.01
Gordon River	Fleischmann Lake	19B	рН	14-Dec	21-Sep	72	8.1	8.0	6.6	9.1	0.5	12.0	7.7	7.7	6.6	8.0	0.4
Gordon River	Fleischmann Lake	19B	Salinity	14-Dec	21-Sep	72	0.27	0.27	0.20	0.44	0.04	12	0.27	0.26	0.21	0.44	0.06
Gordon River	Fleischmann Lake	19B	Temperature	14-Dec	21-Sep	72	61.0	27.6	16.9	2518.0	293.7	12.0	25.7	26.3	18.1	29.3	3.5
Gordon River	Fleischmann Lake	19B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	72	1.33	1.23	0.77	3.51	0.51	12	0.98	0.92	0.77	1.38	0.17
Gordon River	Fleischmann Lake	19B	Total Nitrogen	14-Dec	21-Sep	72	1.37	1.25	0.77	4.33	0.58	12	0.98	0.93	0.77	1.39	0.17
Gordon River	Fleischmann Lake	19B	Total Organic Carbon	20-Oct	21-Sep	12	11.36	10.70	6.10	16.20	2.73	12	11.36	10.70	6.10	16.20	2.73
Gordon River	Fleischmann Lake	19B	Total Phosphorus	14-Dec	21-Sep	72	0.08	0.07	0.01	0.27	0.05	12	0.06	0.07	0.02	0.09	0.02
Gordon River	Fleischmann Lake	19B	Total Suspended Solids	14-Dec	21-Sep	72	10.7	8.9	2.0	40.0	7.5	12	6.9	7.2	2.0	9.4	2.1
Gordon River	Fleischmann Lake	19B	Turbidity	14-Dec	21-Sep	72	7.9	5.7	1.7	43.0	7.5	12	4.5	4.0	2.8	11.0	2.2
Gordon River	Forest Lake	20B	Calcium	20-Nov	21-Sep	11	67.18	66.80	52.90	90.50	10.70	11	67.18	66.80	52.90	90.50	10.70
Gordon River	Forest Lake	20B	Chlorophyll-a, Corrected	14-Dec	21-Sep	67	54.0	30.8	0.1	511.0	69.0	12	39.2	27.3	0.1	165.0	45.4
Gordon River	Forest Lake	20B	Color, Apparent	20-Oct	21-Sep	12	91	90	50	120	25	12	91	90	50	120	25

Dusing as								POR					FY20-21 (October 202	20-Septem	ber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Forest Lake	20B	Color pH	20-Oct	21-Sep	12	8.10	8.18	7.44	8.89	0.37	12	8.10	8.18	7.44	8.89	0.37
Gordon River	Forest Lake	20B	Conductivity	14-Dec	21-Sep	67	548	542	351	716	69	12	531	538	441	620	48
Gordon River	Forest Lake	20B	Copper	14-Dec	21-Sep	67	1.15	0.83	0.17	8.00	1.19	12	0.87	0.91	0.17	1.43	0.48
Gordon River	Forest Lake	20B	Dissolved Oxygen	14-Dec	21-Sep	67	7.13	6.91	0.57	18.01	3.58	12	5.76	5.50	1.72	12.48	2.65
Gordon River	Forest Lake	20B	Dissolved Organic Carbon	20-Oct	21-Sep	12	12.46	13.40	6.23	16.80	3.59	12	12.46	13.40	6.23	16.80	3.59
Gordon River	Forest Lake	20B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	67	87.9	84.4	5.1	223.3	46.4	12	70.4	68.4	22.4	150.7	31.0
Gordon River	Forest Lake	20B	E. coli	20-Oct	21-Sep	12	216	140	52	842	231	12	216	140	52	842	231
Gordon River	Forest Lake	20B	Enterococci	14-Dec	21-Sep	67	593	130	5	20000	2554	12	189	160	30	540	163
Gordon River	Forest Lake	20B	Fecal Coliform	14-Dec	20-Sep	55	451	260	30	2700	538	-	-	-	-	-	-
Gordon River	Forest Lake	20B	Total Hardness, CaCO3	14-Dec	21-Sep	53	184.6	182.0	127.0	245.0	27.0	12	183.3	186.5	143.0	245.0	27.7
Gordon River	Forest Lake	20B	Magnesium	20-Nov	21-Sep	11	3.53	3.57	2.56	4.51	0.57	11	3.53	3.57	2.56	4.51	0.57
Gordon River	Forest Lake	20B	Ammonia	14-Dec	21-Sep	67	0.05	0.01	0.00	1.11	0.15	12	0.03	0.01	0.00	0.12	0.04
Gordon River	Forest Lake	20B	Nitrate+Nitrite	14-Dec	21-Sep	67	0.03	0.00	0.00	0.49	0.08	12	0.01	0.00	0.00	0.10	0.03
Gordon River	Forest Lake	20B	Orthophosphate	14-Dec	21-Sep	67	0.02	0.02	0.00	0.23	0.03	12	0.01	0.01	0.00	0.04	0.01
Gordon River	Forest Lake	20B	рН	14-Dec	21-Sep	67	8.0	8.0	7.0	9.0	0.4	12.0	7.9	8.0	7.0	8.8	0.5
Gordon River	Forest Lake	20B	Salinity	14-Dec	21-Sep	67	0.27	0.26	0.17	0.44	0.04	12	0.26	0.26	0.21	0.30	0.02
Gordon River	Forest Lake	20B	Temperature	14-Dec	21-Sep	67	26.3	27.4	16.4	33.7	4.3	12.0	25.9	27.1	18.3	29.3	3.5
Gordon River	Forest Lake	20B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	67	1.70	1.47	0.71	6.60	0.87	12	1.21	1.13	0.88	2.46	0.42
Gordon River	Forest Lake	20B	Total Nitrogen	14-Dec	21-Sep	67	1.72	1.47	0.72	6.69	0.88	12	1.23	1.13	0.88	2.56	0.45
Gordon River	Forest Lake	20B	Total Organic Carbon	20-Oct	21-Sep	12	14.02	13.85	8.48	20.50	3.31	12	14.02	13.85	8.48	20.50	3.31
Gordon River	Forest Lake	20B	Total Phosphorus	14-Dec	21-Sep	67	0.08	0.06	0.01	0.42	0.08	12	0.06	0.05	0.01	0.14	0.03
Gordon River	Forest Lake	20B	Total Suspended Solids	14-Dec	21-Sep	67	12.6	10.0	0.3	78.5	11.8	12	10.2	8.9	5.3	19.3	4.0
Gordon River	Forest Lake	20B	Turbidity	14-Dec	21-Sep	67	_	-	-	-	_	12	8.8	5.2	2.8	39.6	10.2
Gordon River	Lake Diana	17B	Calcium	20-Nov	21-Sep	11	49.67	50.70	37.80	60.50	6.73	11	49.67	50.70	37.80	60.50	6.73
Gordon River	Lake Diana	17B	Chlorophyll-a, Corrected	20-Oct	21-Sep	12	39.4	35.6	23.3	83.2	17.0	12	39.4	35.6	23.3	83.2	17.0

Dusing as								POR					FY20-21 (0	October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Samplea Count	te Diana Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Lake Diana	17B	Color, Apparent	20-Oct	21-Sep	12	118	110	80	160	27	12	118	110	80	160	27
Gordon River	Lake Diana	17B	Color pH	20-Oct	21-Sep	12	7.61	7.72	6.93	7.90	0.29	12	7.61	7.72	6.93	7.90	0.29
Gordon River	Lake Diana	17B	Conductivity	20-Oct	21-Sep	12	351	355	264	458	53	12	351	355	264	458	53
Gordon River	Lake Diana	17B	Copper	20-Oct	21-Sep	12	1.23	1.08	0.17	3.36	0.95	12	1.23	1.08	0.17	3.36	0.95
Gordon River	Lake Diana	17B	Dissolved Oxygen	20-Oct	21-Sep	12	4.16	4.56	1.21	6.59	1.55	12	4.16	4.56	1.21	6.59	1.55
Gordon River	Lake Diana	17B	Dissolved Organic Carbon	20-Oct	21-Sep	12	12.98	13.00	8.58	21.90	3.38	12	12.98	13.00	8.58	21.90	3.38
Gordon River	Lake Diana	17B	Dissolved Oxygen, Saturation	20-Oct	21-Sep	12	49.0	49.5	15.3	82.0	19.1	12	49.0	49.5	15.3	82.0	19.1
Gordon River	Lake Diana	17B	E. coli	20-Oct	21-Sep	12	1480	660	203	5794	1963	12	1480	660	203	5794	1963
Gordon River	Lake Diana	17B	Enterococci	20-Oct	21-Sep	12	1082	340	150	4400	1539	12	1082	340	150	4400	1539
Gordon River	Lake Diana	17B	Total Hardness, CaCO3	20-Oct	21-Sep	12	150.5	143.0	107.0	270.0	42.0	12	150.5	143.0	107.0	270.0	42.0
Gordon River	Lake Diana	17B	Magnesium	20-Nov	21-Sep	11	3.79	3.84	2.98	5.48	0.72	11	3.79	3.84	2.98	5.48	0.72
Gordon River	Lake Diana	17B	Ammonia	20-Oct	21-Sep	12	0.08	0.02	0.00	0.68	0.19	12	0.08	0.02	0.00	0.68	0.19
Gordon River	Lake Diana	17B	Nitrate+Nitrite	20-Oct	21-Sep	12	0.02	0.00	0.00	0.21	0.06	12	0.02	0.00	0.00	0.21	0.06
Gordon River	Lake Diana	17B	Orthophosphate	20-Oct	21-Sep	12	0.12	0.13	0.05	0.25	0.05	12	0.12	0.13	0.05	0.25	0.05
Gordon River	Lake Diana	17B	рН	20-Oct	21-Sep	12	7.6	7.5	7.1	8.4	0.4	12.0	7.6	7.5	7.1	8.4	0.4
Gordon River	Lake Diana	17B	Salinity	20-Oct	21-Sep	12	0.17	0.17	0.09	0.22	0.03	12	0.17	0.17	0.09	0.22	0.03
Gordon River	Lake Diana	17B	Temperature	20-Oct	21-Sep	12	24.4	26.3	16.0	27.6	3.8	12.0	24.4	26.3	16.0	27.6	3.8
Gordon River	Lake Diana	17B	Total Kjeldahl Nitrogen	20-Oct	21-Sep	12	1.33	1.29	0.36	2.29	0.47	12	1.33	1.29	0.36	2.29	0.47
Gordon River	Lake Diana	17B	Total Nitrogen	20-Oct	21-Sep	12	1.35	1.34	0.36	2.29	0.47	12	1.35	1.34	0.36	2.29	0.47
Gordon River	Lake Diana	17B	Total Organic Carbon	20-Oct	21-Sep	12	14.07	14.15	10.00	21.30	2.96	12	14.07	14.15	10.00	21.30	2.96
Gordon River	Lake Diana	17B	Total Phosphorus	20-Oct	21-Sep	12	0.19	0.19	0.05	0.32	0.06	12	0.19	0.19	0.05	0.32	0.06
Gordon River	Lake Diana	17B	Total Suspended Solids	20-Oct	21-Sep	12	7.2	6.0	3.4	12.0	3.4	12	7.2	6.0	3.4	12.0	3.4
Gordon River	Lake Diana	17B	Turbidity	20-Oct	21-Sep	12	3.9	3.6	2.6	6.0	1.2	12	3.9	3.6	2.6	6.0	1.2
Gordon River	Lake Manor	22B	Calcium	20-Nov	21-Sep	11	65.32	68.50	42.00	91.40	17.81	11	65.32	68.50	42.00	91.40	17.81
Gordon River	Lake Manor	22B	Chlorophyll-a, Corrected	14-Dec	21-Sep	67	15.8	15.2	2.0	54.8	10.7	12	14.9	10.4	2.0	48.1	13.8

Drainage								POR					FY20-21 (October 202	20-Septem	ber 2021)	
Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Lake Manor	22B	Color, Apparent	20-Oct	21-Sep	12	83	80	50	100	13	12	83	80	50	100	13
Gordon River	Lake Manor	22B	Color pH	20-Oct	21-Sep	12	7.69	7.71	7.29	8.06	0.20	12	7.69	7.71	7.29	8.06	0.20
Gordon River	Lake Manor	22B	Conductivity	14-Dec	21-Sep	67	2490	1792	385	15352	2830	12	1532	1060	452	5878	1521
Gordon River	Lake Manor	22B	Copper	14-Dec	21-Sep	67	2.04	1.36	0.14	25.60	3.48	12	2.24	1.75	0.17	8.17	2.09
Gordon River	Lake Manor	22B	Dissolved Oxygen	14-Dec	21-Sep	67	4.94	4.81	0.23	10.95	2.09	12	3.59	3.58	2.46	5.36	0.78
Gordon River	Lake Manor	22B	Dissolved Organic Carbon	20-Oct	21-Sep	12	10.85	11.95	3.86	14.40	3.53	12	10.85	11.95	3.86	14.40	3.53
Gordon River	Lake Manor	22B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	67	61.1	57.9	2.8	150.6	25.7	12	44.3	43.3	33.1	57.9	7.8
Gordon River	Lake Manor	22B	E. coli	20-Oct	21-Sep	12	582	440	109	2359	611	12	582	440	109	2359	611
Gordon River	Lake Manor	22B	Enterococci	14-Dec	21-Sep	67	476	110	10	5200	1063	12	411	135	60	2400	664
Gordon River	Lake Manor	22B	Fecal Coliform	14-Dec	20-Sep	55	600	150	10	13100	1882	-	-	-	-	-	-
Gordon River	Lake Manor	22B	Total Hardness, CaCO3	14-Dec	21-Sep	53	388.7	291.0	122.0	2266.0	396.7	12	280.4	233.0	124.0	770.0	181.9
Gordon River	Lake Manor	22B	Magnesium	20-Nov	21-Sep	11	17.72	14.80	3.77	61.70	16.04	11	17.72	14.80	3.77	61.70	16.04
Gordon River	Lake Manor	22B	Ammonia	14-Dec	21-Sep	67	0.04	0.00	0.00	0.39	0.06	12	0.05	0.03	0.00	0.13	0.04
Gordon River	Lake Manor	22B	Nitrate+Nitrite	14-Dec	21-Sep	67	0.04	0.01	0.00	0.39	0.06	12	0.08	0.03	0.00	0.39	0.11
Gordon River	Lake Manor	22B	Orthophosphate	14-Dec	21-Sep	67	0.04	0.01	0.00	0.39	0.06	12	0.05	0.03	0.01	0.11	0.03
Gordon River	Lake Manor	22B	рН	14-Dec	21-Sep	67	0.0	0.0	0.0	0.4	0.1	12.0	67.2	7.5	7.1	725.0	207.1
Gordon River	Lake Manor	22B	Salinity	14-Dec	21-Sep	67	0.04	0.01	0.00	0.39	0.06	12	0.78	0.53	0.21	3.10	0.81
Gordon River	Lake Manor	22B	Temperature	14-Dec	21-Sep	67	0.0	0.0	0.0	0.4	0.1	12.0	26.1	27.5	18.9	29.6	3.4
Gordon River	Lake Manor	22B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	67	0.86	0.81	0.36	2.83	0.35	12	0.74	0.70	0.49	1.71	0.32
Gordon River	Lake Manor	22B	Total Nitrogen	14-Dec	21-Sep	67	0.90	0.85	0.36	2.84	0.36	12	0.82	0.73	0.51	1.77	0.34
Gordon River	Lake Manor	22B	Total Organic Carbon	20-Oct	21-Sep	12	11.16	12.05	4.52	15.20	3.19	12	11.16	12.05	4.52	15.20	3.19
Gordon River	Lake Manor	22B	Total Phosphorus	14-Dec	21-Sep	67	0.08	0.08	0.00	0.27	0.05	12	0.08	0.08	0.03	0.14	0.03
Gordon River	Lake Manor	22B	Total Suspended Solids	14-Dec	21-Sep	67	3.4	2.9	0.3	10.7	2.2	12	3.1	3.6	0.3	5.6	1.9
Gordon River	Lake Manor	22B	Turbidity	14-Dec	21-Sep	67	2.7	2.1	0.9	16.4	2.2	12	1.7	1.6	0.9	2.9	0.6
Gordon River	Mandarin Lake	6B	Calcium	20-Nov	21-Sep	11	82.16	87.10	57.50	105.00	15.51	11	82.16	87.10	57.50	105.00	15.51

During and								POR					FY20-21 (October 202	20-Septem	ber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Mandarin Lake	6B	Chlorophyll-a, Corrected	14-Dec	21-Sep	43	22.2	17.0	1.2	80.0	16.4	12	19.7	16.4	9.8	38.6	9.1
Gordon River	Mandarin Lake	6B	Color, Apparent	20-Oct	21-Sep	12	111	105	80	180	28	12	111	105	80	180	28
Gordon River	Mandarin Lake	6B	Color pH	20-Oct	21-Sep	12	7.57	7.57	7.10	7.89	0.25	12	7.57	7.57	7.10	7.89	0.25
Gordon River	Mandarin Lake	6B	Conductivity	14-Dec	21-Sep	43	682	703	504	846	72	12	659	701	543	730	75
Gordon River	Mandarin Lake	6B	Copper	14-Dec	21-Sep	43	3.31	0.92	0.17	86.20	13.06	12	1.19	1.25	0.17	2.42	0.79
Gordon River	Mandarin Lake	6B	Dissolved Oxygen	14-Dec	21-Sep	43	4.71	4.65	0.56	9.09	2.36	12	2.72	2.59	1.02	4.59	0.91
Gordon River	Mandarin Lake	6B	Dissolved Organic Carbon	20-Oct	21-Sep	12	13.19	14.05	5.53	17.30	3.49	12	13.19	14.05	5.53	17.30	3.49
Gordon River	Mandarin Lake	6B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	43	58.5	60.3	7.2	124.5	29.6	12	33.3	32.4	13.2	55.1	10.8
Gordon River	Mandarin Lake	6B	E. coli	20-Oct	21-Sep	12	279	208	41	744	234	12	279	208	41	744	234
Gordon River	Mandarin Lake	6B	Enterococci	14-Dec	21-Sep	43	270	140	5	2300	385	12	218	150	20	720	216
Gordon River	Mandarin Lake	6B	Fecal Coliform	14-Dec	20-Aug	31	1138	170	10	19400	3452	-	-	-	-	-	-
Gordon River	Mandarin Lake	6B	Total Hardness, CaCO3	14-Dec	21-Sep	32	224.9	236.0	160.0	291.0	30.3	12	227.9	239.5	160.0	291.0	40.3
Gordon River	Mandarin Lake	6B	Magnesium	20-Nov	21-Sep	11	5.31	5.47	3.99	6.88	0.94	11	5.31	5.47	3.99	6.88	0.94
Gordon River	Mandarin Lake	6B	Ammonia	14-Dec	21-Sep	43	0.02	0.01	0.00	0.12	0.02	12	0.02	0.01	0.00	0.12	0.03
Gordon River	Mandarin Lake	6B	Nitrate+Nitrite	14-Dec	21-Sep	43	0.02	0.00	0.00	0.32	0.06	12	0.01	0.00	0.00	0.02	0.01
Gordon River	Mandarin Lake	6B	Orthophosphate	14-Dec	21-Sep	43	0.04	0.03	0.00	0.10	0.02	12	0.04	0.04	0.01	0.08	0.02
Gordon River	Mandarin Lake	6B	рН	14-Dec	21-Sep	43	7.6	7.5	7.0	8.5	0.3	12.0	7.4	7.3	7.0	7.7	0.2
Gordon River	Mandarin Lake	6B	Salinity	14-Dec	21-Sep	43	0.33	0.34	0.24	0.41	0.04	12	0.32	0.34	0.26	0.35	0.04
Gordon River	Mandarin Lake	6B	Temperature	14-Dec	21-Sep	43	26.1	27.0	18.7	32.7	3.6	12.0	25.6	26.7	18.7	28.5	3.1
Gordon River	Mandarin Lake	6B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	43	1.01	0.92	0.25	1.87	0.29	12	0.78	0.82	0.25	0.91	0.17
Gordon River	Mandarin Lake	6B	Total Nitrogen	14-Dec	21-Sep	43	1.03	0.93	0.25	1.87	0.31	12	0.79	0.83	0.25	0.91	0.17
Gordon River	Mandarin Lake	6B	Total Organic Carbon	20-Oct	21-Sep	12	14.21	14.70	8.48	20.40	3.39	12	14.21	14.70	8.48	20.40	3.39
Gordon River	Mandarin Lake	6B	Total Phosphorus	14-Dec	21-Sep	43	0.08	0.08	0.01	0.16	0.04	12	0.06	0.06	0.01	0.12	0.03
Gordon River	Mandarin Lake	6B	Total Suspended Solids	14-Dec	21-Sep	43	6.3	5.2	1.5	24.0	4.5	12	3.6	3.5	1.5	7.6	1.7
Gordon River	Mandarin Lake	6B	Turbidity	14-Dec	21-Sep	43	3.8	3.1	1.1	13.0	2.2	12	2.2	2.3	1.1	3.1	0.6

Ducing as								POR					FY20-21 (0	October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	NCH Lake	26B	Calcium	20-Nov	21-Sep	11	45.27	44.40	19.60	78.20	17.67	11	45.27	44.40	19.60	78.20	17.67
Gordon River	NCH Lake	26B	Chlorophyll-a, Corrected	14-Dec	21-Sep	67	48.2	29.7	11.0	779.0	93.7	12	49.9	47.5	16.5	104.0	25.7
Gordon River	NCH Lake	26B	Color, Apparent	20-Oct	21-Sep	12	95	95	40	140	33	12	95	95	40	140	33
Gordon River	NCH Lake	26B	Color pH	20-Oct	21-Sep	12	7.86	7.88	7.41	8.17	0.26	12	7.86	7.88	7.41	8.17	0.26
Gordon River	NCH Lake	26B	Conductivity	14-Dec	21-Sep	67	597	576	333	964	129	12	647	726	333	792	157
Gordon River	NCH Lake	26B	Copper	14-Dec	21-Sep	67	65.31	43.70	7.24	436.00	67.07	12	37.35	41.30	17.20	60.50	14.83
Gordon River	NCH Lake	26B	Dissolved Oxygen	14-Dec	21-Sep	67	5.30	5.13	0.62	8.72	1.88	12	5.75	5.33	4.07	8.71	1.58
Gordon River	NCH Lake	26B	Dissolved Organic Carbon	20-Oct	21-Sep	12	11.87	13.90	3.01	17.40	4.64	12	11.87	13.90	3.01	17.40	4.64
Gordon River	NCH Lake	26B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	67	63.5	65.8	10.4	103.2	18.3	12	68.5	66.6	49.7	100.8	15.2
Gordon River	NCH Lake	26B	E. coli	20-Oct	21-Sep	12	589	529	155	1112	296	12	589	529	155	1112	296
Gordon River	NCH Lake	26B	Enterococci	14-Dec	21-Sep	67	892	470	5	20000	2481	12	315	230	5	1150	332
Gordon River	NCH Lake	26B	Fecal Coliform	14-Dec	20-Sep	55	885	340	60	11400	1695	-	-	-	-	-	-
Gordon River	NCH Lake	26B	Total Hardness, CaCO3	14-Dec	21-Sep	53	153.8	157.0	65.5	255.0	41.6	12	152.4	162.5	65.5	255.0	54.3
Gordon River	NCH Lake	26B	Magnesium	20-Nov	21-Sep	11	9.43	10.20	4.02	14.40	3.58	11	9.43	10.20	4.02	14.40	3.58
Gordon River	NCH Lake	26B	Ammonia	14-Dec	21-Sep	67	0.02	0.00	0.00	0.19	0.04	12	0.02	0.01	0.00	0.11	0.03
Gordon River	NCH Lake	26B	Nitrate+Nitrite	14-Dec	21-Sep	67	0.02	0.01	0.00	0.19	0.03	12	0.01	0.00	0.00	0.05	0.01
Gordon River	NCH Lake	26B	Orthophosphate	14-Dec	21-Sep	67	0.03	0.02	0.00	0.12	0.03	12	0.02	0.02	0.00	0.04	0.01
Gordon River	NCH Lake	26B	рН	14-Dec	21-Sep	67	7.7	7.7	5.9	8.5	0.4	12.0	7.5	7.5	5.9	8.0	0.6
Gordon River	NCH Lake	26B	Salinity	14-Dec	21-Sep	67	0.29	0.28	0.16	0.54	0.07	12	0.31	0.35	0.16	0.39	0.08
Gordon River	NCH Lake	26B	Temperature	14-Dec	21-Sep	67	24.5	25.4	14.5	30.7	4.1	12.0	24.6	25.9	17.0	27.9	3.4
Gordon River	NCH Lake	26B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	67	1.27	1.16	0.25	7.74	0.93	12	1.12	1.27	0.25	1.53	0.39
Gordon River	NCH Lake	26B	Total Nitrogen	14-Dec	21-Sep	67	1.29	1.19	0.25	7.75	0.93	12	1.13	1.27	0.25	1.53	0.39
Gordon River	NCH Lake	26B	Total Organic Carbon	20-Oct	21-Sep	12	12.33	14.35	3.20	17.40	4.60	12	12.33	14.35	3.20	17.40	4.60
Gordon River	NCH Lake	26B	Total Phosphorus	14-Dec	21-Sep	67	0.09	0.08	0.00	0.29	0.06	12	0.09	0.09	0.04	0.13	0.03
Gordon River	NCH Lake	26B	Total Suspended Solids	14-Dec	21-Sep	67	10.6	8.4	0.3	74.0	10.5	12	8.5	9.4	0.3	14.5	4.6

Dreimen								POR					FY20-21 (October 202	20-Septem	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	NCH Lake	26B	Turbidity	14-Dec	21-Sep	67	5.6	5.0	1.4	22.3	3.3	12	4.3	4.6	1.4	6.5	1.4
Gordon River	Sun Lake Terrace	15B	Calcium	20-Nov	21-Sep	11	70.37	72.10	55.00	84.00	9.47	11	70.37	72.10	55.00	84.00	9.47
Gordon River	Sun Lake Terrace	15B	Chlorophyll-a, Corrected	14-Dec	21-Sep	43	14.8	12.6	0.1	41.0	10.0	12	13.4	12.1	6.7	29.8	6.6
Gordon River	Sun Lake Terrace	15B	Color, Apparent	20-Oct	21-Sep	12	116	120	70	200	35	12	116	120	70	200	35
Gordon River	Sun Lake Terrace	15B	Color pH	20-Oct	21-Sep	12	8.01	8.09	7.52	8.39	0.26	12	8.01	8.09	7.52	8.39	0.26
Gordon River	Sun Lake Terrace	15B	Conductivity	14-Dec	21-Sep	43	470	487	334	550	52	12	416	407	334	490	52
Gordon River	Sun Lake Terrace	15B	Copper	14-Dec	21-Sep	43	7.37	4.65	0.17	65.70	10.31	12	5.00	4.51	0.17	12.90	3.39
Gordon River	Sun Lake Terrace	15B	Dissolved Oxygen	14-Dec	21-Sep	43	5.74	5.67	1.52	10.83	2.04	12	4.74	4.70	1.54	6.87	1.68
Gordon River	Sun Lake Terrace	15B	Dissolved Organic Carbon	20-Oct	21-Sep	12	14.58	15.05	10.10	20.60	2.98	12	14.58	15.05	10.10	20.60	2.98
Gordon River	Sun Lake Terrace	15B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	43	71.1	67.6	20.0	117.8	24.0	12	57.9	59.7	20.0	84.2	18.7
Gordon River	Sun Lake Terrace	15B	E. coli	20-Oct	21-Sep	12	1203	584	185	8664	2368	12	1203	584	185	8664	2368
Gordon River	Sun Lake Terrace	15B	Enterococci	14-Dec	21-Sep	43	409	200	5	4300	753	12	694	320	30	4300	1192
Gordon River	Sun Lake Terrace	15B	Fecal Coliform	14-Dec	20-Aug	31	795	280	40	14400	2538	-	-	-	-	-	-
Gordon River	Sun Lake Terrace	15B	Total Hardness, CaCO3	14-Dec	21-Sep	32	186.8	186.0	149.0	231.0	18.7	12	189.8	191.5	149.0	231.0	24.7
Gordon River	Sun Lake Terrace	15B	Magnesium	20-Nov	21-Sep	11	3.59	3.52	2.87	5.08	0.61	11	3.59	3.52	2.87	5.08	0.61
Gordon River	Sun Lake Terrace	15B	Ammonia	14-Dec	21-Sep	43	0.04	0.01	0.00	0.27	0.06	12	0.06	0.03	0.00	0.23	0.07
Gordon River	Sun Lake Terrace	15B	Nitrate+Nitrite	14-Dec	21-Sep	43	0.07	0.02	0.00	0.42	0.11	12	0.08	0.02	0.00	0.42	0.13
Gordon River	Sun Lake Terrace	15B	Orthophosphate	14-Dec	21-Sep	43	0.01	0.01	0.00	0.06	0.01	12	0.01	0.02	0.00	0.04	0.01
Gordon River	Sun Lake Terrace	15B	рН	14-Dec	21-Sep	43	7.9	8.0	6.8	8.5	0.4	12.0	8.0	7.9	7.3	8.5	0.3
Gordon River	Sun Lake Terrace	15B	Salinity	14-Dec	21-Sep	43	0.22	0.23	0.11	0.27	0.03	12	0.19	0.19	0.11	0.24	0.04
Gordon River	Sun Lake Terrace	15B	Temperature	14-Dec	21-Sep	43	26.5	26.3	17.8	32.9	3.9	12.0	26.0	27.0	18.5	29.1	3.5
Gordon River	Sun Lake Terrace	15B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	43	1.06	1.02	0.28	1.99	0.30	12	0.97	0.98	0.28	1.52	0.32
Gordon River	Sun Lake Terrace	15B	Total Nitrogen	14-Dec	21-Sep	43	1.13	1.09	0.32	2.03	0.32	12	1.05	1.05	0.32	1.94	0.38
Gordon River	Sun Lake Terrace	15B	Total Organic Carbon	20-Oct	21-Sep	12	15.88	15.20	11.20	23.60	3.43	12	15.88	15.20	11.20	23.60	3.43
Gordon River	Sun Lake Terrace	15B	Total Phosphorus	14-Dec	21-Sep	43	0.05	0.04	0.00	0.36	0.06	12	0.05	0.05	0.01	0.12	0.03

Durcing and								POR					FY20-21 (October 202	20-Septem	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Max	SD
Gordon River	Sun Lake Terrace	15B	Total Suspended Solids	14-Dec	21-Sep	43	6.0	4.5	1.0	28.0	5.1	12	5.0	5.2	1.0	9.2	3.1
Gordon River	Sun Lake Terrace	15B	Turbidity	14-Dec	21-Sep	43	3.7	2.7	0.9	11.2	2.6	12	2.6	2.3	0.9	6.7	1.6
Gordon River	Thurner	16B	Calcium	20-Nov	21-Sep	11	72.49	72.50	57.80	90.10	10.88	11	72.49	72.50	57.80	90.10	10.88
Gordon River	Thurner	16B	Chlorophyll-a, Corrected	20-Oct	21-Sep	12	31.1	25.5	18.4	51.4	12.8	12	31.1	25.5	18.4	51.4	12.8
Gordon River	Thurner	16B	Color, Apparent	20-Oct	21-Sep	12	124	130	80	160	26	12	124	130	80	160	26
Gordon River	Thurner	16B	Color pH	20-Oct	21-Sep	12	7.87	7.84	7.45	8.25	0.28	12	7.87	7.84	7.45	8.25	0.28
Gordon River	Thurner	16B	Conductivity	20-Oct	21-Sep	12	2731	446	320	27993	7956	12	2731	446	320	27993	7956
Gordon River	Thurner	16B	Copper	20-Oct	21-Sep	12	5.78	4.63	0.17	12.90	4.38	12	5.78	4.63	0.17	12.90	4.38
Gordon River	Thurner	16B	Dissolved Oxygen	20-Oct	21-Sep	12	4.61	4.75	2.44	7.60	1.67	12	4.61	4.75	2.44	7.60	1.67
Gordon River	Thurner	16B	Dissolved Organic Carbon	20-Oct	21-Sep	12	15.45	16.65	6.10	20.10	4.12	12	15.45	16.65	6.10	20.10	4.12
Gordon River	Thurner	16B	Dissolved Oxygen, Saturation	20-Oct	21-Sep	12	57.4	59.4	31.6	86.7	19.4	12	57.4	59.4	31.6	86.7	19.4
Gordon River	Thurner	16B	E. coli	20-Oct	21-Sep	12	1457	307	110	12997	3643	12	1457	307	110	12997	3643
Gordon River	Thurner	16B	Enterococci	20-Oct	21-Sep	12	493	225	30	2400	691	12	493	225	30	2400	691
Gordon River	Thurner	16B	Total Hardness, CaCO3	20-Oct	21-Sep	12	210.9	198.0	162.0	360.0	54.6	12	210.9	198.0	162.0	360.0	54.6
Gordon River	Thurner	16B	Magnesium	20-Nov	21-Sep	11	3.94	3.90	2.79	5.67	0.81	11	3.94	3.90	2.79	5.67	0.81
Gordon River	Thurner	16B	Ammonia	20-Oct	21-Sep	12	0.04	0.02	0.00	0.09	0.04	12	0.04	0.02	0.00	0.09	0.04
Gordon River	Thurner	16B	Nitrate+Nitrite	20-Oct	21-Sep	12	0.03	0.00	0.00	0.20	0.06	12	0.03	0.00	0.00	0.20	0.06
Gordon River	Thurner	16B	Orthophosphate	20-Oct	21-Sep	12	0.02	0.01	0.01	0.05	0.02	12	0.02	0.01	0.01	0.05	0.02
Gordon River	Thurner	16B	рН	20-Oct	21-Sep	12	7.8	7.9	7.4	8.2	0.3	12.0	7.8	7.9	7.4	8.2	0.3
Gordon River	Thurner	16B	Salinity	20-Oct	21-Sep	12	1.61	0.21	0.11	17.17	4.90	12	1.61	0.21	0.11	17.17	4.90
Gordon River	Thurner	16B	Temperature	20-Oct	21-Sep	12	26.2	27.8	18.4	28.9	3.5	12.0	26.2	27.8	18.4	28.9	3.5
Gordon River	Thurner	16B	Total Kjeldahl Nitrogen	20-Oct	21-Sep	12	1.32	1.34	1.05	1.59	0.17	12	1.32	1.34	1.05	1.59	0.17
Gordon River	Thurner	16B	Total Nitrogen	20-Oct	21-Sep	12	1.35	1.37	1.05	1.59	0.18	12	1.35	1.37	1.05	1.59	0.18
Gordon River	Thurner	16B	Total Organic Carbon	20-Oct	21-Sep	12	17.17	16.80	12.60	22.30	3.01	12	17.17	16.80	12.60	22.30	3.01
Gordon River	Thurner	16B	Total Phosphorus	20-Oct	21-Sep	12	0.07	0.07	0.03	0.10	0.02	12	0.07	0.07	0.03	0.10	0.02

Desinens								POR					FY20-21 (C	October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Max	SD
Gordon River	Thurner	16B	Total Suspended Solids	20-Oct	21-Sep	12	9.5	9.2	3.0	19.5	5.0	12	9.5	9.2	3.0	19.5	5.0
Gordon River	Thurner	16B	Turbidity	20-Oct	21-Sep	12	4.6	4.0	3.4	7.5	1.3	12	4.6	4.0	3.4	7.5	1.3
Gordon River	Willow	21B	Calcium	20-Nov	21-Sep	11	86.02	86.80	67.30	117.00	13.89	11	86.02	86.80	67.30	117.00	13.89
Gordon River	Willow	21B	Chlorophyll-a, Corrected	20-Oct	21-Sep	12	22.2	16.4	4.4	63.0	20.3	12	22.2	16.4	4.4	63.0	20.3
Gordon River	Willow	21B	Color, Apparent	20-Oct	21-Sep	12	165	170	120	200	27	12	165	170	120	200	27
Gordon River	Willow	21B	Color pH	20-Oct	21-Sep	12	7.76	7.77	7.28	8.17	0.26	12	7.76	7.77	7.28	8.17	0.26
Gordon River	Willow	21B	Conductivity	20-Oct	21-Sep	12	618	619	576	647	22	12	618	619	576	647	22
Gordon River	Willow	21B	Copper	20-Oct	21-Sep	12	1.15	1.12	0.17	2.32	0.71	12	1.15	1.12	0.17	2.32	0.71
Gordon River	Willow	21B	Dissolved Oxygen	20-Oct	21-Sep	12	4.51	4.78	0.94	8.84	2.11	12	4.51	4.78	0.94	8.84	2.11
Gordon River	Willow	21B	Dissolved Organic Carbon	20-Oct	21-Sep	12	19.73	20.35	10.80	25.10	4.44	12	19.73	20.35	10.80	25.10	4.44
Gordon River	Willow	21B	Dissolved Oxygen, Saturation	20-Oct	21-Sep	12	54.5	58.4	12.0	102.5	24.4	12	54.5	58.4	12.0	102.5	24.4
Gordon River	Willow	21B	E. coli	20-Oct	21-Sep	12	534	369	86	1553	428	12	534	369	86	1553	428
Gordon River	Willow	21B	Enterococci	20-Oct	21-Sep	12	293	270	40	780	243	12	293	270	40	780	243
Gordon River	Willow	21B	Total Hardness, CaCO3	20-Oct	21-Sep	12	226.2	230.5	179.0	310.0	36.0	12	226.2	230.5	179.0	310.0	36.0
Gordon River	Willow	21B	Magnesium	20-Nov	21-Sep	11	3.30	3.35	2.51	4.29	0.58	11	3.30	3.35	2.51	4.29	0.58
Gordon River	Willow	21B	Ammonia	20-Oct	21-Sep	12	0.05	0.03	0.00	0.15	0.05	12	0.05	0.03	0.00	0.15	0.05
Gordon River	Willow	21B	Nitrate+Nitrite	20-Oct	21-Sep	12	0.01	0.00	0.00	0.03	0.01	12	0.01	0.00	0.00	0.03	0.01
Gordon River	Willow	21B	Orthophosphate	20-Oct	21-Sep	12	0.03	0.02	0.00	0.09	0.03	12	0.03	0.02	0.00	0.09	0.03
Gordon River	Willow	21B	рН	20-Oct	21-Sep	12	7.4	7.4	6.8	8.1	0.4	12.0	7.4	7.4	6.8	8.1	0.4
Gordon River	Willow	21B	Salinity	20-Oct	21-Sep	12	0.30	0.30	0.28	0.31	0.01	12	0.30	0.30	0.28	0.31	0.01
Gordon River	Willow	21B	Temperature	20-Oct	21-Sep	12	25.4	27.0	17.7	28.5	3.3	12.0	25.4	27.0	17.7	28.5	3.3
Gordon River	Willow	21B	Total Kjeldahl Nitrogen	20-Oct	21-Sep	12	1.06	1.02	0.65	1.86	0.30	12	1.06	1.02	0.65	1.86	0.30
Gordon River	Willow	21B	Total Nitrogen	20-Oct	21-Sep	12	0.98	1.01	0.03	1.88	0.42	12	0.98	1.01	0.03	1.88	0.42
Gordon River	Willow	21B	Total Organic Carbon	20-Oct	21-Sep	12	20.95	20.85	17.80	24.20	2.00	12	20.95	20.85	17.80	24.20	2.00
Gordon River	Willow	21B	Total Phosphorus	20-Oct	21-Sep	12	0.05	0.05	0.02	0.09	0.02	12	0.05	0.05	0.02	0.09	0.02

During and								POR					FY20-21 (0	October 202	20-Septem	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Gordon River	Willow	21B	Total Suspended Solids	20-Oct	21-Sep	12	3.8	3.1	0.3	8.7	2.9	12	3.8	3.1	0.3	8.7	2.9
Gordon River	Willow	21B	Turbidity	20-Oct	21-Sep	12	2.0	1.9	0.6	4.1	1.0	12	2.0	1.9	0.6	4.1	1.0
Gulf of Mexico	Alligator Lake	10B	Calcium	20-Nov	21-Sep	11	94.98	91.00	55.80	141.00	30.48	11	94.98	91.00	55.80	141.00	30.48
Gulf of Mexico	Alligator Lake	10B	Chlorophyll-a, Corrected	14-Dec	21-Sep	37	23.9	18.3	0.6	91.5	21.2	12	11.2	9.0	0.6	23.6	8.8
Gulf of Mexico	Alligator Lake	10B	Color, Apparent	20-Oct	21-Sep	12	70	70	40	100	15	12	70	70	40	100	15
Gulf of Mexico	Alligator Lake	10B	Color pH	20-Oct	21-Sep	12	7.75	7.71	7.53	8.12	0.16	12	7.75	7.71	7.53	8.12	0.16
Gulf of Mexico	Alligator Lake	10B	Conductivity	14-Dec	21-Sep	37	9020	8203	1338	26404	5081	12	7405	6693	1338	17054	4845
Gulf of Mexico	Alligator Lake	10B	Copper	14-Dec	21-Sep	37	2.52	1.43	0.14	22.30	4.61	12	1.58	1.18	0.14	5.04	1.59
Gulf of Mexico	Alligator Lake	10B	Dissolved Oxygen	14-Dec	21-Sep	37	6.01	5.87	2.02	10.52	2.05	12	5.42	5.41	2.21	8.95	1.99
Gulf of Mexico	Alligator Lake	10B	Dissolved Organic Carbon	20-Oct	21-Sep	12	11.38	12.30	5.78	14.10	2.39	12	11.38	12.30	5.78	14.10	2.39
Gulf of Mexico	Alligator Lake	10B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	37	77.2	75.5	27.7	122.1	26.0	12	70.3	66.8	27.7	120.4	28.0
Gulf of Mexico	Alligator Lake	10B	E. coli	20-Oct	21-Sep	12	387	168	31	1223	386	12	387	168	31	1223	386
Gulf of Mexico	Alligator Lake	10B	Enterococci	14-Dec	21-Sep	37	186	50	5	2000	361	12	370	90	5	2000	588
Gulf of Mexico	Alligator Lake	10B	Fecal Coliform	14-Dec	20-Aug	25	111	50	5	1080	215	-	-	-	-	-	_
Gulf of Mexico	Alligator Lake	10B	Total Hardness, CaCO3	15-Jul	21-Sep	23	944.1	886.0	210.0	2755.0	570.1	12	869.8	881.0	210.0	2000.0	518.5
Gulf of Mexico	Alligator Lake	10B	Magnesium	20-Nov	21-Sep	11	129.15	125.00	17.20	250.00	78.63	11	129.15	125.00	17.20	250.00	78.63
Gulf of Mexico	Alligator Lake	10B	Ammonia	14-Dec	21-Sep	37	0.06	0.02	0.00	0.24	0.07	12	0.13	0.15	0.01	0.23	0.07
Gulf of Mexico	Alligator Lake	10B	Nitrate+Nitrite	14-Dec	21-Sep	37	0.02	0.01	0.00	0.24	0.04	12	0.04	0.02	0.00	0.24	0.07
Gulf of Mexico	Alligator Lake	10B	Orthophosphate	14-Dec	21-Sep	37	0.06	0.06	0.00	0.13	0.04	12	0.09	0.09	0.06	0.13	0.02
Gulf of Mexico	Alligator Lake	10B	рН	14-Dec	21-Sep	37	7.7	7.6	7.3	8.4	0.3	12.0	7.8	7.8	7.4	8.4	0.4
Gulf of Mexico	Alligator Lake	10B	Salinity	14-Dec	21-Sep	37	5.10	4.56	0.66	16.17	3.12	12	4.10	3.65	0.66	9.97	2.85
Gulf of Mexico	Alligator Lake	10B	Temperature	14-Dec	21-Sep	37	26.7	26.7	19.7	32.8	3.9	12.0	27.2	28.6	20.1	30.7	3.5
Gulf of Mexico	Alligator Lake	10B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	37	1.14	1.07	0.53	1.97	0.35	12	0.95	0.91	0.53	1.93	0.37
Gulf of Mexico	Alligator Lake	10B	Total Nitrogen	14-Dec	21-Sep	37	1.16	1.08	0.53	1.98	0.35	12	1.00	0.92	0.53	1.96	0.38
Gulf of Mexico	Alligator Lake	10B	Total Organic Carbon	20-Oct	21-Sep	12	12.58	12.65	7.49	18.20	2.91	12	12.58	12.65	7.49	18.20	2.91

During and								POR					FY20-21 (October 20	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Gulf of Mexico	Alligator Lake	10B	Total Phosphorus	14-Dec	21-Sep	37	0.10	0.10	0.01	0.20	0.04	12	0.11	0.11	0.07	0.14	0.02
Gulf of Mexico	Alligator Lake	10B	Total Suspended Solids	14-Dec	21-Sep	37	6.4	5.8	0.3	14.8	3.9	12	4.3	3.0	0.3	14.8	4.5
Gulf of Mexico	Alligator Lake	10B	Turbidity	14-Dec	21-Sep	37	9.9	3.9	0.6	204.0	32.9	12	19.2	2.5	0.6	204.0	58.2
Gulf of Mexico	North Lake	8B	Calcium	20-Nov	21-Sep	11	75.32	76.50	47.80	106.00	19.56	11	75.32	76.50	47.80	106.00	19.56
Gulf of Mexico	North Lake	8B	Chlorophyll-a, Corrected	17-Oct	21-Sep	48	88.1	67.1	25.9	249.0	57.5	12	79.2	57.1	40.0	155.0	42.8
Gulf of Mexico	North Lake	8B	Color, Apparent	20-Oct	21-Sep	12	116	105	60	200	41	12	116	105	60	200	41
Gulf of Mexico	North Lake	8B	Color pH	20-Oct	21-Sep	12	7.87	7.91	7.44	8.25	0.24	12	7.87	7.91	7.44	8.25	0.24
Gulf of Mexico	North Lake	8B	Conductivity	17-Oct	21-Sep	48	642	636	429	1218	114	12	657	649	429	1218	202
Gulf of Mexico	North Lake	8B	Copper	17-Oct	21-Sep	48	6.13	2.94	0.17	43.10	9.12	12	5.40	1.81	0.17	43.10	11.94
Gulf of Mexico	North Lake	8B	Dissolved Oxygen	17-Oct	21-Sep	48	6.37	6.54	1.86	11.45	2.53	12	7.56	7.62	3.13	11.27	2.65
Gulf of Mexico	North Lake	8B	Dissolved Organic Carbon	20-Oct	21-Sep	12	12.47	14.00	4.62	17.60	4.30	12	12.47	14.00	4.62	17.60	4.30
Gulf of Mexico	North Lake	8B	Dissolved Oxygen, Saturation	17-Oct	21-Sep	48	78.2	80.5	23.9	140.2	29.4	12	93.5	95.8	40.7	140.2	31.1
Gulf of Mexico	North Lake	8B	E. coli	20-Oct	21-Sep	12	767	302	63	5475	1499	12	767	302	63	5475	1499
Gulf of Mexico	North Lake	8B	Enterococci	17-Oct	21-Sep	48	938	250	50	9000	1581	12	966	150	70	3200	1234
Gulf of Mexico	North Lake	8B	Fecal Coliform	17-Oct	20-Sep	36	968	385	5	8900	1679	-	-	-	-	-	-
Gulf of Mexico	North Lake	8B	Total Hardness, CaCO3	18-Mar	21-Sep	43	228.8	206.0	142.0	814.0	104.6	12	298.3	225.5	170.0	814.0	180.0
Gulf of Mexico	North Lake	8B	Magnesium	20-Nov	21-Sep	11	28.56	10.90	6.74	134.00	38.06	11	28.56	10.90	6.74	134.00	38.06
Gulf of Mexico	North Lake	8B	Ammonia	17-Oct	21-Sep	48	0.03	0.01	0.00	0.21	0.04	12	0.04	0.01	0.00	0.16	0.05
Gulf of Mexico	North Lake	8B	Nitrate+Nitrite	17-Oct	21-Sep	48	0.08	0.01	0.00	1.88	0.28	12	0.03	0.00	0.00	0.15	0.05
Gulf of Mexico	North Lake	8B	Orthophosphate	17-Oct	21-Sep	48	0.05	0.04	0.00	0.14	0.03	12	0.05	0.04	0.01	0.12	0.03
Gulf of Mexico	North Lake	8B	рН	17-Oct	21-Sep	48	7.9	7.8	7.2	8.6	0.3	12.0	8.1	8.2	7.5	8.6	0.3
Gulf of Mexico	North Lake	8B	Salinity	17-Oct	21-Sep	48	0.31	0.31	0.21	0.60	0.06	12	0.32	0.32	0.21	0.60	0.10
Gulf of Mexico	North Lake	8B	Temperature	17-Oct	21-Sep	48	26.2	27.4	16.4	32.0	4.3	12.0	27.2	28.1	20.3	32.0	3.4
Gulf of Mexico	North Lake	8B	Total Kjeldahl Nitrogen	17-Oct	21-Sep	48	3.52	1.96	1.11	46.40	6.57	12	5.40	1.51	1.32	46.40	12.92
Gulf of Mexico	North Lake	8B	Total Nitrogen	17-Oct	21-Sep	48	3.60	1.97	1.13	46.50	6.60	12	5.43	1.52	1.37	46.50	12.94

Dreinere								POR					FY20-21 (0	October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Gulf of Mexico	North Lake	8B	Total Organic Carbon	20-Oct	21-Sep	12	14.01	14.70	7.25	19.70	3.47	12	14.01	14.70	7.25	19.70	3.47
Gulf of Mexico	North Lake	8B	Total Phosphorus	17-Oct	21-Sep	48	0.25	0.15	0.01	3.00	0.44	12	0.36	0.12	0.03	3.00	0.83
Gulf of Mexico	North Lake	8B	Total Suspended Solids	17-Oct	21-Sep	48	37.2	15.0	0.8	354.0	65.6	12	21.3	9.4	2.6	129.0	35.2
Gulf of Mexico	North Lake	8B	Turbidity	17-Oct	21-Sep	48	-	-	-	-	-	12	6.2	4.4	3.4	16.0	3.9
Gulf of Mexico	South Lake	9B	Calcium	20-Nov	21-Sep	11	67.46	71.70	48.10	80.90	12.16	11	67.46	71.70	48.10	80.90	12.16
Gulf of Mexico	South Lake	9B	Chlorophyll-a, Corrected	14-Dec	21-Sep	67	66.8	46.0	3.3	1018.0	124.3	12	37.5	36.6	3.3	82.5	20.2
Gulf of Mexico	South Lake	9B	Color, Apparent	20-Oct	21-Sep	12	105	100	60	200	38	12	105	100	60	200	38
Gulf of Mexico	South Lake	9B	Color pH	20-Oct	21-Sep	12	8.23	8.21	7.81	8.61	0.27	12	8.23	8.21	7.81	8.61	0.27
Gulf of Mexico	South Lake	9B	Conductivity	14-Dec	21-Sep	67	618	618	48	859	109	12	563	578	455	649	69
Gulf of Mexico	South Lake	9B	Copper	14-Dec	21-Sep	67	7.31	5.39	0.17	47.20	8.05	12	4.96	5.35	0.17	9.33	2.88
Gulf of Mexico	South Lake	9B	Dissolved Oxygen	14-Dec	21-Sep	67	7.69	7.38	2.02	19.82	3.08	12	8.88	9.28	4.04	11.45	2.36
Gulf of Mexico	South Lake	9B	Dissolved Organic Carbon	20-Oct	21-Sep	12	11.66	13.00	3.32	15.40	3.80	12	11.66	13.00	3.32	15.40	3.80
Gulf of Mexico	South Lake	9B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	67	93.5	91.3	12.0	235.8	38.0	12	111.9	110.6	57.6	148.9	30.0
Gulf of Mexico	South Lake	9B	E. coli	20-Oct	21-Sep	12	205	231	41	420	112	12	205	231	41	420	112
Gulf of Mexico	South Lake	9B	Enterococci	14-Dec	21-Sep	67	239	150	20	2100	292	12	244	260	20	470	151
Gulf of Mexico	South Lake	9B	Fecal Coliform	14-Dec	20-Sep	55	410	140	10	6100	994	-	-	-	-	-	-
Gulf of Mexico	South Lake	9B	Total Hardness, CaCO3	14-Dec	21-Sep	53	200.2	202.0	140.0	263.0	27.4	12	195.7	208.0	140.0	233.0	34.3
Gulf of Mexico	South Lake	9B	Magnesium	20-Nov	21-Sep	11	6.42	6.19	3.82	9.56	1.85	11	6.42	6.19	3.82	9.56	1.85
Gulf of Mexico	South Lake	9B	Ammonia	14-Dec	21-Sep	67	0.09	0.01	0.00	2.21	0.31	12	0.03	0.02	0.00	0.15	0.04
Gulf of Mexico	South Lake	9B	Nitrate+Nitrite	14-Dec	21-Sep	67	0.03	0.02	0.00	0.29	0.05	12	0.02	0.00	0.00	0.14	0.04
Gulf of Mexico	South Lake	9B	Orthophosphate	14-Dec	21-Sep	67	0.07	0.04	0.01	0.28	0.06	12	0.05	0.03	0.01	0.12	0.04
Gulf of Mexico	South Lake	9B	рН	14-Dec	21-Sep	67	8.1	8.0	7.1	8.9	0.3	12.0	8.3	8.4	7.7	8.9	0.4
Gulf of Mexico	South Lake	9B	Salinity	14-Dec	21-Sep	67	0.30	0.30	0.02	0.44	0.06	12	0.27	0.28	0.22	0.31	0.03
Gulf of Mexico	South Lake	9B	Temperature	14-Dec	21-Sep	67	26.6	27.6	16.1	33.6	4.3	12.0	27.6	28.9	20.6	31.4	3.5
Gulf of Mexico	South Lake	9B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	67	1.83	1.52	0.50	9.60	1.18	12	1.49	1.28	0.50	3.92	0.87

Desinens								POR					FY20-21 (0	October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Gulf of Mexico	South Lake	9B	Total Nitrogen	14-Dec	21-Sep	67	1.83	1.53	0.03	9.63	1.21	12	1.51	1.30	0.50	4.06	0.91
Gulf of Mexico	South Lake	9B	Total Organic Carbon	20-Oct	21-Sep	12	12.44	13.05	5.73	17.00	3.14	12	12.44	13.05	5.73	17.00	3.14
Gulf of Mexico	South Lake	9B	Total Phosphorus	14-Dec	21-Sep	67	0.17	0.13	0.01	0.69	0.13	12	0.09	0.08	0.03	0.16	0.03
Gulf of Mexico	South Lake	9B	Total Suspended Solids	14-Dec	21-Sep	67	12.1	9.8	1.5	57.0	9.2	12	8.9	8.0	2.5	18.0	4.5
Gulf of Mexico	South Lake	9B	Turbidity	14-Dec	21-Sep	67	9.0	6.1	2.1	109.0	13.5	12	4.4	4.1	2.1	7.6	1.7
Moorings Bay	Colonnade Lake	3B	Calcium	20-Nov	21-Sep	11	63.18	69.20	39.00	79.10	13.43	11	63.18	69.20	39.00	79.10	13.43
Moorings Bay	Colonnade Lake	3B	Chlorophyll-a, Corrected	14-Dec	21-Sep	67	39.3	19.3	4.7	492.0	70.4	12	13.6	9.5	4.7	32.6	9.2
Moorings Bay	Colonnade Lake	3B	Color, Apparent	20-Oct	21-Sep	12	132	135	100	160	25	12	132	135	100	160	25
Moorings Bay	Colonnade Lake	3B	Color pH	20-Oct	21-Sep	12	7.65	7.71	7.21	7.96	0.21	12	7.65	7.71	7.21	7.96	0.21
Moorings Bay	Colonnade Lake	3B	Conductivity	14-Dec	21-Sep	67	1229	936	94	6462	968	12	960	745	429	2847	676
Moorings Bay	Colonnade Lake	3B	Copper	14-Dec	21-Sep	67	4.47	3.92	0.17	23.60	3.53	12	4.12	3.42	0.17	13.80	3.63
Moorings Bay	Colonnade Lake	3B	Dissolved Oxygen	14-Dec	21-Sep	67	5.74	5.88	0.69	10.48	2.18	12	4.56	4.55	0.98	6.58	1.52
Moorings Bay	Colonnade Lake	3B	Dissolved Organic Carbon	20-Oct	21-Sep	12	12.55	11.90	7.30	17.30	3.22	12	12.55	11.90	7.30	17.30	3.22
Moorings Bay	Colonnade Lake	3B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	67	70.2	71.2	1.2	119.6	23.7	12	58.8	60.6	39.8	71.8	10.1
Moorings Bay	Colonnade Lake	3B	E. coli	20-Oct	21-Sep	12	150	115	10	565	148	12	150	115	10	565	148
Moorings Bay	Colonnade Lake	3B	Enterococci	14-Dec	21-Sep	67	341	150	10	4600	650	12	167	90	20	860	234
Moorings Bay	Colonnade Lake	3B	Fecal Coliform	14-Dec	20-Sep	55	480	220	5	4900	787	-	-	-	-	-	-
Moorings Bay	Colonnade Lake	3B	Total Hardness, CaCO3	14-Dec	21-Sep	53	228.7	216.0	102.0	457.0	78.3	12	216.4	216.0	122.0	331.0	66.0
Moorings Bay	Colonnade Lake	3B	Magnesium	20-Nov	21-Sep	11	11.75	10.30	4.67	27.20	6.99	11	11.75	10.30	4.67	27.20	6.99
Moorings Bay	Colonnade Lake	3B	Ammonia	14-Dec	21-Sep	67	0.09	0.03	0.00	0.40	0.11	12	0.17	0.15	0.00	0.32	0.12
Moorings Bay	Colonnade Lake	3B	Nitrate+Nitrite	14-Dec	21-Sep	67	0.06	0.02	0.00	0.69	0.10	12	0.09	0.06	0.00	0.28	0.08
Moorings Bay	Colonnade Lake	3B	Orthophosphate	14-Dec	21-Sep	67	0.05	0.04	0.00	0.15	0.03	12	0.06	0.06	0.01	0.12	0.04
Moorings Bay	Colonnade Lake	3B	рН	14-Dec	21-Sep	67	7.6	7.6	7.1	8.1	0.3	12.0	7.6	7.7	7.1	8.1	0.3
Moorings Bay	Colonnade Lake	3B	Salinity	14-Dec	21-Sep	67	0.63	0.46	0.18	3.59	0.53	12	0.48	0.37	0.20	1.47	0.37
Moorings Bay	Colonnade Lake	3B	Temperature	14-Dec	21-Sep	67	25.5	26.7	16.9	31.6	3.8	12.0	25.4	26.3	18.6	28.3	3.2

Desinons								POR					FY20-21 (0	October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Moorings Bay	Colonnade Lake	3B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	67	1.08	1.01	0.59	2.52	0.30	12	0.96	0.93	0.59	1.66	0.26
Moorings Bay	Colonnade Lake	3B	Total Nitrogen	14-Dec	21-Sep	67	1.14	1.06	0.62	2.52	0.31	12	1.05	1.03	0.62	1.80	0.30
Moorings Bay	Colonnade Lake	3B	Total Organic Carbon	20-Oct	21-Sep	12	14.48	15.00	8.63	21.10	3.52	12	14.48	15.00	8.63	21.10	3.52
Moorings Bay	Colonnade Lake	3B	Total Phosphorus	14-Dec	21-Sep	67	0.11	0.10	0.00	0.25	0.05	12	0.09	0.08	0.02	0.16	0.04
Moorings Bay	Colonnade Lake	3B	Total Suspended Solids	14-Dec	21-Sep	67	5.1	4.4	0.3	15.3	3.1	12	4.1	4.0	0.3	11.0	3.1
Moorings Bay	Colonnade Lake	3B	Turbidity	14-Dec	21-Sep	67	4.2	3.8	0.8	13.7	2.6	12	2.8	2.4	0.8	5.1	1.5
Moorings Bay	Devils Lake	1SE-B	Calcium	20-Nov	21-Sep	11	62.88	65.50	45.70	81.70	9.87	11	62.88	65.50	45.70	81.70	9.87
Moorings Bay	Devils Lake	1SE-B	Chlorophyll-a, Corrected	14-Dec	21-Sep	67	6.0	4.4	0.1	36.9	6.2	12	7.5	5.7	3.5	25.6	6.1
Moorings Bay	Devils Lake	1SE-B	Color, Apparent	20-Oct	21-Sep	12	164	160	120	200	22	12	164	160	120	200	22
Moorings Bay	Devils Lake	1SE-B	Color pH	20-Oct	21-Sep	12	7.76	7.82	7.20	8.03	0.23	12	7.76	7.82	7.20	8.03	0.23
Moorings Bay	Devils Lake	1SE-B	Conductivity	14-Dec	21-Sep	67	849	530	318	10278	1475	12	461	485	318	549	84
Moorings Bay	Devils Lake	1SE-B	Copper	14-Dec	21-Sep	67	43.63	14.80	0.17	1160.00	142.07	12	20.15	14.45	4.00	62.50	16.74
Moorings Bay	Devils Lake	1SE-B	Dissolved Oxygen	14-Dec	21-Sep	67	6.13	6.33	1.61	10.10	1.81	12	5.39	5.02	3.92	10.10	1.58
Moorings Bay	Devils Lake	1SE-B	Dissolved Organic Carbon	20-Oct	21-Sep	12	18.64	19.45	11.60	25.70	3.71	12	18.64	19.45	11.60	25.70	3.71
Moorings Bay	Devils Lake	1SE-B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	67	75.4	78.8	20.8	110.5	20.3	12	65.1	63.0	50.8	107.3	14.4
Moorings Bay	Devils Lake	1SE-B	E. coli	20-Oct	21-Sep	12	41	31	5	122	38	12	41	31	5	122	38
Moorings Bay	Devils Lake	1SE-B	Enterococci	14-Dec	21-Sep	67	363	60	5	12500	1573	12	70	35	10	230	71
Moorings Bay	Devils Lake	1SE-B	Fecal Coliform	14-Dec	20-Sep	55	227	70	5	2400	447	-	-	-	-	-	-
Moorings Bay	Devils Lake	1SE-B	Total Hardness, CaCO3	14-Dec	21-Sep	53	205.1	167.0	120.0	997.0	153.2	12	177.8	181.0	130.0	233.0	24.8
Moorings Bay	Devils Lake	1SE-B	Magnesium	20-Nov	21-Sep	11	5.34	4.77	3.82	10.00	1.73	11	5.34	4.77	3.82	10.00	1.73
Moorings Bay	Devils Lake	1SE-B	Ammonia	14-Dec	21-Sep	67	0.04	0.02	0.00	0.25	0.05	12	0.06	0.04	0.00	0.17	0.06
Moorings Bay	Devils Lake	1SE-B	Nitrate+Nitrite	14-Dec	21-Sep	67	0.06	0.03	0.00	0.28	0.08	12	0.06	0.05	0.00	0.26	0.07
Moorings Bay	Devils Lake	1SE-B	Orthophosphate	14-Dec	21-Sep	67	0.01	0.01	0.00	0.10	0.02	12	0.01	0.01	0.00	0.04	0.01
Moorings Bay	Devils Lake	1SE-B	рН	14-Dec	21-Sep	67	7.7	7.8	6.8	8.4	0.3	12.0	7.4	7.4	6.8	8.2	0.5
Moorings Bay	Devils Lake	1SE-B	Salinity	14-Dec	21-Sep	67	0.43	0.25	0.12	5.84	0.83	12	0.22	0.23	0.12	0.26	0.05

Desiran								POR					FY20-21 (0	October 202	20-Septem	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Moorings Bay	Devils Lake	1SE-B	Temperature	14-Dec	21-Sep	67	26.3	27.9	15.9	33.4	4.3	12.0	25.7	27.0	18.4	29.0	3.5
Moorings Bay	Devils Lake	1SE-B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	67	1.03	1.02	0.58	1.81	0.21	12	0.99	0.96	0.58	1.62	0.25
Moorings Bay	Devils Lake	1SE-B	Total Nitrogen	14-Dec	21-Sep	67	1.08	1.04	0.03	1.99	0.27	12	1.05	1.02	0.77	1.69	0.23
Moorings Bay	Devils Lake	1SE-B	Total Organic Carbon	20-Oct	21-Sep	12	20.99	21.00	16.20	28.00	3.03	12	20.99	21.00	16.20	28.00	3.03
Moorings Bay	Devils Lake	1SE-B	Total Phosphorus	14-Dec	21-Sep	67	0.05	0.04	0.00	0.21	0.03	12	0.03	0.04	0.00	0.06	0.02
Moorings Bay	Devils Lake	1SE-B	Total Suspended Solids	14-Dec	21-Sep	67	2.1	1.5	0.3	12.3	2.2	12	2.8	1.7	0.3	7.6	2.7
Moorings Bay	Devils Lake	1SE-B	Turbidity	14-Dec	21-Sep	67	2.0	1.8	1.0	12.3	1.5	12	2.0	2.1	1.0	3.1	0.7
Moorings Bay	Hidden	4B	Calcium	20-Nov	21-Sep	11	57.75	60.00	35.90	70.40	10.78	11	57.75	60.00	35.90	70.40	10.78
Moorings Bay	Hidden	4B	Chlorophyll-a, Corrected	20-Oct	21-Sep	12	23.5	26.2	5.0	38.0	12.0	12	23.5	26.2	5.0	38.0	12.0
Moorings Bay	Hidden	4B	Color, Apparent	20-Oct	21-Sep	12	157	160	100	200	31	12	157	160	100	200	31
Moorings Bay	Hidden	4B	Color pH	20-Oct	21-Sep	12	7.50	7.56	7.17	7.77	0.20	12	7.50	7.56	7.17	7.77	0.20
Moorings Bay	Hidden	4B	Conductivity	20-Oct	21-Sep	12	443	422	333	578	88	12	443	422	333	578	88
Moorings Bay	Hidden	4B	Copper	20-Oct	21-Sep	12	8.46	7.64	0.17	23.60	5.80	12	8.46	7.64	0.17	23.60	5.80
Moorings Bay	Hidden	4B	Dissolved Oxygen	20-Oct	21-Sep	12	5.27	5.06	3.61	6.74	1.21	12	5.27	5.06	3.61	6.74	1.21
Moorings Bay	Hidden	4B	Dissolved Organic Carbon	20-Oct	21-Sep	12	13.41	13.45	6.57	18.70	3.52	12	13.41	13.45	6.57	18.70	3.52
Moorings Bay	Hidden	4B	Dissolved Oxygen, Saturation	20-Oct	21-Sep	12	63.4	62.7	46.0	86.1	13.5	12	63.4	62.7	46.0	86.1	13.5
Moorings Bay	Hidden	4B	E. coli	20-Oct	21-Sep	12	1004	671	161	3873	1069	12	1004	671	161	3873	1069
Moorings Bay	Hidden	4B	Enterococci	20-Oct	21-Sep	12	554	400	50	1600	426	12	554	400	50	1600	426
Moorings Bay	Hidden	4B	Total Hardness, CaCO3	20-Oct	21-Sep	12	164.9	172.0	102.0	198.0	28.9	12	164.9	172.0	102.0	198.0	28.9
Moorings Bay	Hidden	4B	Magnesium	20-Nov	21-Sep	11	4.80	5.02	2.95	6.35	0.89	11	4.80	5.02	2.95	6.35	0.89
Moorings Bay	Hidden	4B	Ammonia	20-Oct	21-Sep	12	0.09	0.10	0.00	0.17	0.07	12	0.09	0.10	0.00	0.17	0.07
Moorings Bay	Hidden	4B	Nitrate+Nitrite	20-Oct	21-Sep	12	0.06	0.05	0.00	0.21	0.06	12	0.06	0.05	0.00	0.21	0.06
Moorings Bay	Hidden	4B	Orthophosphate	20-Oct	21-Sep	12	0.04	0.03	0.01	0.11	0.03	12	0.04	0.03	0.01	0.11	0.03
Moorings Bay	Hidden	4B	рН	20-Oct	21-Sep	12	7.5	7.5	7.2	8.0	0.3	12.0	7.5	7.5	7.2	8.0	0.3
Moorings Bay	Hidden	4B	Salinity	20-Oct	21-Sep	12	0.22	0.21	0.13	0.31	0.06	12	0.22	0.21	0.13	0.31	0.06

During and								POR					FY20-21 (C	October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Moorings Bay	Hidden	4B	Temperature	20-Oct	21-Sep	12	25.3	26.2	18.9	28.1	2.9	12.0	25.3	26.2	18.9	28.1	2.9
Moorings Bay	Hidden	4B	Total Kjeldahl Nitrogen	20-Oct	21-Sep	12	0.78	0.75	0.27	1.35	0.29	12	0.78	0.75	0.27	1.35	0.29
Moorings Bay	Hidden	4B	Total Nitrogen	20-Oct	21-Sep	12	0.84	0.83	0.37	1.40	0.28	12	0.84	0.83	0.37	1.40	0.28
Moorings Bay	Hidden	4B	Total Organic Carbon	20-Oct	21-Sep	12	15.13	15.80	9.10	22.40	3.89	12	15.13	15.80	9.10	22.40	3.89
Moorings Bay	Hidden	4B	Total Phosphorus	20-Oct	21-Sep	12	0.07	0.07	0.03	0.14	0.03	12	0.07	0.07	0.03	0.14	0.03
Moorings Bay	Hidden	4B	Total Suspended Solids	20-Oct	21-Sep	12	5.6	5.9	1.5	11.3	3.3	12	5.6	5.9	1.5	11.3	3.3
Moorings Bay	Hidden	4B	Turbidity	20-Oct	21-Sep	12	3.2	3.2	1.7	7.5	1.5	12	3.2	3.2	1.7	7.5	1.5
Moorings Bay	Lake Suzanne	5B	Calcium	20-Nov	21-Sep	11	48.92	55.90	28.60	62.40	13.24	11	48.92	55.90	28.60	62.40	13.24
Moorings Bay	Lake Suzanne	5B	Chlorophyll-a, Corrected	14-Dec	21-Sep	67	35.0	22.4	0.7	290.0	49.1	12	34.3	33.5	16.6	58.3	15.0
Moorings Bay	Lake Suzanne	5B	Color, Apparent	20-Oct	21-Sep	12	115	105	60	160	33	12	115	105	60	160	33
Moorings Bay	Lake Suzanne	5B	Color pH	20-Oct	21-Sep	12	7.78	7.85	7.45	8.05	0.21	12	7.78	7.85	7.45	8.05	0.21
Moorings Bay	Lake Suzanne	5B	Conductivity	14-Dec	21-Sep	67	476	476	229	777	114	12	385	379	229	502	103
Moorings Bay	Lake Suzanne	5B	Copper	14-Dec	21-Sep	67	7.96	4.82	0.17	42.80	8.44	12	11.57	8.36	1.79	41.40	10.85
Moorings Bay	Lake Suzanne	5B	Dissolved Oxygen	14-Dec	21-Sep	67	6.58	6.88	1.52	11.36	2.35	12	5.71	5.41	3.14	8.41	1.70
Moorings Bay	Lake Suzanne	5B	Dissolved Organic Carbon	20-Oct	21-Sep	12	9.88	11.70	1.36	14.50	3.97	12	9.88	11.70	1.36	14.50	3.97
Moorings Bay	Lake Suzanne	5B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	67	81.4	78.8	19.5	150.4	29.1	12	70.2	68.5	40.6	100.2	20.1
Moorings Bay	Lake Suzanne	5B	E. coli	20-Oct	21-Sep	12	172	86	41	663	202	12	172	86	41	663	202
Moorings Bay	Lake Suzanne	5B	Enterococci	14-Dec	21-Sep	67	318	210	10	3100	480	12	242	215	40	810	215
Moorings Bay	Lake Suzanne	5B	Fecal Coliform	14-Dec	20-Sep	55	836	160	5	10700	1958	-	-	-	-	-	-
Moorings Bay	Lake Suzanne	5B	Total Hardness, CaCO3	14-Dec	21-Sep	53	149.5	148.0	80.0	225.0	32.4	12	141.6	158.5	80.9	179.0	36.8
Moorings Bay	Lake Suzanne	5B	Magnesium	20-Nov	21-Sep	11	4.34	4.72	2.29	5.79	1.28	11	4.34	4.72	2.29	5.79	1.28
Moorings Bay	Lake Suzanne	5B	Ammonia	14-Dec	21-Sep	67	0.07	0.04	0.00	0.35	0.08	12	0.06	0.02	0.00	0.21	0.06
Moorings Bay	Lake Suzanne	5B	Nitrate+Nitrite	14-Dec	21-Sep	67	0.09	0.07	0.00	0.37	0.08	12	0.06	0.04	0.00	0.19	0.06
Moorings Bay	Lake Suzanne	5B	Orthophosphate	14-Dec	21-Sep	67	0.07	0.06	0.01	0.36	0.06	12	0.05	0.05	0.01	0.09	0.03
Moorings Bay	Lake Suzanne	5B	рН	14-Dec	21-Sep	67	7.7	7.7	6.8	8.7	0.4	12.0	7.7	7.8	7.3	8.3	0.4

Durcing and								POR					FY20-21 (0	October 202	20-Septem	ber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Max	SD
Moorings Bay	Lake Suzanne	5B	Salinity	14-Dec	21-Sep	67	0.24	0.23	0.11	0.90	0.10	12	0.18	0.17	0.11	0.24	0.05
Moorings Bay	Lake Suzanne	5B	Temperature	14-Dec	21-Sep	67	26.4	27.5	17.6	33.1	3.8	12.0	26.0	26.8	19.3	29.5	3.1
Moorings Bay	Lake Suzanne	5B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	67	1.06	1.01	0.16	2.48	0.40	12	0.84	0.79	0.16	1.30	0.30
Moorings Bay	Lake Suzanne	5B	Total Nitrogen	14-Dec	21-Sep	67	1.14	1.11	0.19	2.50	0.42	12	0.91	0.88	0.19	1.49	0.33
Moorings Bay	Lake Suzanne	5B	Total Organic Carbon	20-Oct	21-Sep	12	11.39	12.00	3.35	20.90	4.82	12	11.39	12.00	3.35	20.90	4.82
Moorings Bay	Lake Suzanne	5B	Total Phosphorus	14-Dec	21-Sep	67	0.13	0.11	0.04	0.45	0.07	12	0.08	0.08	0.04	0.14	0.04
Moorings Bay	Lake Suzanne	5B	Total Suspended Solids	14-Dec	21-Sep	67	6.9	6.0	1.4	28.0	4.4	12	8.3	8.4	1.5	16.9	4.8
Moorings Bay	Lake Suzanne	5B	Turbidity	14-Dec	21-Sep	67	5.1	4.1	1.2	24.8	3.8	12	4.5	4.4	3.0	6.7	1.1
Moorings Bay	Lowdermilk	23B	Calcium	20-Nov	21-Sep	11	193.03	206.00	95.10	335.00	78.39	11	193.03	206.00	95.10	335.00	78.39
Moorings Bay	Lowdermilk	23B	Chlorophyll-a, Corrected	20-Oct	21-Sep	12	20.0	10.1	2.3	124.0	33.6	12	20.0	10.1	2.3	124.0	33.6
Moorings Bay	Lowdermilk	23B	Color, Apparent	20-Oct	21-Sep	12	48	48	30	70	14	12	48	48	30	70	14
Moorings Bay	Lowdermilk	23B	Color pH	20-Oct	21-Sep	12	7.76	7.71	7.41	8.35	0.26	12	7.76	7.71	7.41	8.35	0.26
Moorings Bay	Lowdermilk	23B	Conductivity	20-Oct	21-Sep	12	21962	21757	412	37215	10568	12	21962	21757	412	37215	10568
Moorings Bay	Lowdermilk	23B	Copper	20-Oct	21-Sep	12	2.98	0.95	0.14	10.20	3.61	12	2.98	0.95	0.14	10.20	3.61
Moorings Bay	Lowdermilk	23B	Dissolved Oxygen	20-Oct	21-Sep	12	4.59	4.62	2.13	7.58	1.68	12	4.59	4.62	2.13	7.58	1.68
Moorings Bay	Lowdermilk	23B	Dissolved Organic Carbon	20-Oct	21-Sep	12	8.03	7.97	1.36	11.70	2.55	12	8.03	7.97	1.36	11.70	2.55
Moorings Bay	Lowdermilk	23B	Dissolved Oxygen, Saturation	20-Oct	21-Sep	12	60.9	56.5	25.6	106.8	24.4	12	60.9	56.5	25.6	106.8	24.4
Moorings Bay	Lowdermilk	23B	E. coli	20-Oct	21-Sep	12	552	341	74	2603	681	12	552	341	74	2603	681
Moorings Bay	Lowdermilk	23B	Enterococci	20-Oct	21-Sep	12	193	30	5	710	262	12	193	30	5	710	262
Moorings Bay	Lowdermilk	23B	Total Hardness, CaCO3	20-Oct	21-Sep	12	2509.4	2239.5	1009.0	4370.0	1217.5	12	2509.4	2239.5	1009.0	4370.0	1217.5
Moorings Bay	Lowdermilk	23B	Magnesium	20-Nov	21-Sep	11	453.09	409.00	188.00	860.00	228.25	11	453.09	409.00	188.00	860.00	228.25
Moorings Bay	Lowdermilk	23B	Ammonia	20-Oct	21-Sep	12	0.21	0.12	0.00	0.73	0.24	12	0.21	0.12	0.00	0.73	0.24
Moorings Bay	Lowdermilk	23B	Nitrate+Nitrite	20-Oct	21-Sep	12	0.01	0.00	0.00	0.09	0.02	12	0.01	0.00	0.00	0.09	0.02
Moorings Bay	Lowdermilk	23B	Orthophosphate	20-Oct	21-Sep	12	0.04	0.03	0.02	0.10	0.02	12	0.04	0.03	0.02	0.10	0.02
Moorings Bay	Lowdermilk	23B	рН	20-Oct	21-Sep	12	7.7	7.7	7.3	8.7	0.4	12.0	7.7	7.7	7.3	8.7	0.4

Duringen								POR					FY20-21 (October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Moorings Bay	Lowdermilk	23B	Salinity	20-Oct	21-Sep	12	13.82	12.53	0.20	23.46	7.49	12	13.82	12.53	0.20	23.46	7.49
Moorings Bay	Lowdermilk	23B	Temperature	20-Oct	21-Sep	12	26.9	28.7	18.8	30.6	3.8	12.0	26.9	28.7	18.8	30.6	3.8
Moorings Bay	Lowdermilk	23B	Total Kjeldahl Nitrogen	20-Oct	21-Sep	12	0.61	0.61	0.44	0.83	0.13	12	0.61	0.61	0.44	0.83	0.13
Moorings Bay	Lowdermilk	23B	Total Nitrogen	20-Oct	21-Sep	12	0.62	0.63	0.44	0.83	0.12	12	0.62	0.63	0.44	0.83	0.12
Moorings Bay	Lowdermilk	23B	Total Organic Carbon	20-Oct	21-Sep	12	9.14	8.78	2.88	19.70	4.10	12	9.14	8.78	2.88	19.70	4.10
Moorings Bay	Lowdermilk	23B	Total Phosphorus	20-Oct	21-Sep	12	0.08	0.07	0.03	0.12	0.02	12	0.08	0.07	0.03	0.12	0.02
Moorings Bay	Lowdermilk	23B	Total Suspended Solids	20-Oct	21-Sep	12	13.2	12.2	4.0	31.2	7.2	12	13.2	12.2	4.0	31.2	7.2
Moorings Bay	Lowdermilk	23B	Turbidity	20-Oct	21-Sep	12	2.1	2.1	0.8	3.4	0.9	12	2.1	2.1	0.8	3.4	0.9
Moorings Bay	Swan Lake	2B	Calcium	20-Nov	21-Sep	11	49.85	52.60	30.20	63.80	10.97	11	49.85	52.60	30.20	63.80	10.97
Moorings Bay	Swan Lake	2B	Chlorophyll-a, Corrected	14-Dec	21-Sep	61	33.8	28.3	0.1	135.0	27.2	12	31.8	30.1	0.1	60.3	19.0
Moorings Bay	Swan Lake	2B	Chemical Oxygen Demand	21-Feb	21-Sep	7	38.87	30.00	18.80	106.00	30.47	7	38.87	30.00	18.80	106.00	30.47
Moorings Bay	Swan Lake	2B	Color, Apparent	20-Oct	21-Sep	12	111	100	50	250	50	12	111	100	50	250	50
Moorings Bay	Swan Lake	2B	Color pH	20-Oct	21-Sep	12	7.89	7.91	7.27	8.94	0.46	12	7.89	7.91	7.27	8.94	0.46
Moorings Bay	Swan Lake	2B	Conductivity	14-Dec	21-Sep	61	1947	432	251	42344	7140	12	360	360	251	474	79
Moorings Bay	Swan Lake	2B	Copper	14-Dec	21-Sep	61	7.21	4.12	0.17	59.40	10.43	12	4.28	3.83	0.17	12.90	3.09
Moorings Bay	Swan Lake	2B	Dissolved Oxygen	14-Dec	21-Sep	61	7.07	7.11	1.64	13.40	2.71	12	5.65	5.26	2.27	8.76	1.91
Moorings Bay	Swan Lake	2B	Dissolved Organic Carbon	20-Oct	21-Sep	12	10.70	11.30	4.19	14.80	3.15	12	10.70	11.30	4.19	14.80	3.15
Moorings Bay	Swan Lake	2B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	61	87.9	86.4	22.2	168.1	33.5	12	68.2	65.2	29.6	101.8	22.3
Moorings Bay	Swan Lake	2B	E. coli	20-Oct	21-Sep	12	120	80	10	393	123	12	120	80	10	393	123
Moorings Bay	Swan Lake	2B	Enterococci	14-Dec	21-Sep	61	207	80	5	3600	480	12	96	50	5	350	111
Moorings Bay	Swan Lake	2B	Fecal Coliform	14-Dec	20-Sep	49	926	240	10	20000	2944	-	-	-	-	-	-
Moorings Bay	Swan Lake	2B	Total Hardness, CaCO3	15-Nov	21-Sep	50	143.1	146.5	82.4	194.0	26.1	12	144.3	154.0	85.0	188.0	31.7
Moorings Bay	Swan Lake	2B	Magnesium	20-Nov	21-Sep	11	4.23	4.54	2.32	6.85	1.25	11	4.23	4.54	2.32	6.85	1.25
Moorings Bay	Swan Lake	2B	Ammonia	14-Dec	21-Sep	61	0.05	0.01	0.00	0.62	0.11	12	0.06	0.02	0.00	0.39	0.11
Moorings Bay	Swan Lake	2B	Nitrate+Nitrite	14-Dec	21-Sep	61	0.04	0.02	0.00	0.27	0.06	12	0.03	0.01	0.00	0.13	0.04

During and								POR					FY20-21 (October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Moorings Bay	Swan Lake	2B	Orthophosphate	14-Dec	21-Sep	61	0.04	0.03	0.00	0.29	0.05	12	0.02	0.02	0.00	0.06	0.02
Moorings Bay	Swan Lake	2B	рН	14-Dec	21-Sep	61	7.9	7.9	7.1	8.8	0.4	12.0	7.8	7.9	7.1	8.3	0.4
Moorings Bay	Swan Lake	2B	Salinity	14-Dec	21-Sep	61	1.22	0.21	0.11	29.73	4.81	12	0.17	0.17	0.11	0.23	0.04
Moorings Bay	Swan Lake	2B	Temperature	14-Dec	21-Sep	61	26.4	27.7	16.8	32.6	4.2	12.0	25.7	27.0	18.7	29.1	3.3
Moorings Bay	Swan Lake	2B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	61	1.23	1.08	0.61	2.65	0.48	12	1.23	1.07	0.62	2.65	0.58
Moorings Bay	Swan Lake	2B	Total Nitrogen	14-Dec	21-Sep	61	1.27	1.11	0.61	2.67	0.48	12	1.26	1.09	0.63	2.67	0.57
Moorings Bay	Swan Lake	2B	Total Organic Carbon	20-Oct	21-Sep	12	11.93	11.50	5.98	19.40	3.50	12	11.93	11.50	5.98	19.40	3.50
Moorings Bay	Swan Lake	2B	Total Phosphorus	14-Dec	21-Sep	61	0.11	0.09	0.01	0.39	0.08	12	0.09	0.07	0.03	0.31	0.08
Moorings Bay	Swan Lake	2B	Total Suspended Solids	14-Dec	21-Sep	61	5.9	5.0	0.3	18.5	3.5	12	5.2	5.3	0.3	12.0	3.8
Moorings Bay	Swan Lake	2B	Turbidity	14-Dec	21-Sep	61	7.1	4.8	1.5	31.0	6.3	12	6.9	3.7	1.5	31.0	8.3
Naples Bay	East Lake	11B	Calcium	20-Nov	21-Sep	11	72.69	68.20	50.30	94.70	15.40	11	72.69	68.20	50.30	94.70	15.40
Naples Bay	East Lake	11B	Chlorophyll-a, Corrected	14-Dec	21-Sep	37	29.3	20.6	0.1	136.0	30.8	12	45.7	29.3	0.1	136.0	45.3
Naples Bay	East Lake	11B	Color, Apparent	20-Oct	21-Sep	12	123	120	80	220	42	12	123	120	80	220	42
Naples Bay	East Lake	11B	Color pH	20-Oct	21-Sep	12	7.95	7.98	7.47	8.43	0.26	12	7.95	7.98	7.47	8.43	0.26
Naples Bay	East Lake	11B	Conductivity	14-Dec	21-Sep	37	667	670	516	777	70	12	666	704	516	747	80
Naples Bay	East Lake	11B	Copper	14-Dec	21-Sep	37	5.59	4.50	0.17	33.00	5.84	12	5.43	5.30	0.17	13.40	3.45
Naples Bay	East Lake	11B	Dissolved Oxygen	14-Dec	21-Sep	37	4.50	4.63	0.16	9.03	1.97	12	5.12	5.41	0.16	7.77	1.91
Naples Bay	East Lake	11B	Dissolved Organic Carbon	20-Oct	21-Sep	12	13.04	13.90	4.47	21.20	4.69	12	13.04	13.90	4.47	21.20	4.69
Naples Bay	East Lake	11B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	37	54.8	58.6	2.1	101.2	23.0	12	63.7	64.1	2.1	101.2	24.8
Naples Bay	East Lake	11B	E. coli	20-Oct	21-Sep	12	525	550	148	1054	251	12	525	550	148	1054	251
Naples Bay	East Lake	11B	Enterococci	14-Dec	21-Sep	37	473	240	40	3600	728	12	381	165	60	1500	467
Naples Bay	East Lake	11B	Fecal Coliform	14-Dec	20-Aug	25	1240	840	170	6400	1338	-	-	-	_	-	-
Naples Bay	East Lake	11B	Total Hardness, CaCO3	14-Dec	21-Sep	32	204.5	199.0	145.0	284.0	33.0	12	214.6	208.5	145.0	284.0	46.9
Naples Bay	East Lake	11B	Magnesium	20-Nov	21-Sep	11	6.48	6.79	3.88	10.70	1.90	11	6.48	6.79	3.88	10.70	1.90
Naples Bay	East Lake	11B	Ammonia	14-Dec	21-Sep	37	0.04	0.02	0.00	0.75	0.12	12	0.08	0.01	0.00	0.75	0.21

During and								POR					FY20-21 (October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Max	SD
Naples Bay	East Lake	11B	Nitrate+Nitrite	14-Dec	21-Sep	37	0.04	0.02	0.00	0.34	0.06	12	0.01	0.00	0.00	0.02	0.01
Naples Bay	East Lake	11B	Orthophosphate	14-Dec	21-Sep	37	0.05	0.04	0.00	0.21	0.04	12	0.02	0.02	0.00	0.05	0.02
Naples Bay	East Lake	11B	рН	14-Dec	21-Sep	37	7.7	7.7	7.1	8.1	0.2	12.0	7.6	7.7	7.2	8.0	0.2
Naples Bay	East Lake	11B	Salinity	14-Dec	21-Sep	37	0.32	0.33	0.25	0.38	0.04	12	0.32	0.34	0.25	0.37	0.04
Naples Bay	East Lake	11B	Temperature	14-Dec	21-Sep	37	25.6	26.0	16.8	31.7	4.1	12.0	26.3	27.9	18.8	29.9	3.5
Naples Bay	East Lake	11B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	37	1.14	1.02	0.46	4.62	0.71	12	1.45	1.00	0.46	4.62	1.17
Naples Bay	East Lake	11B	Total Nitrogen	14-Dec	21-Sep	37	1.18	1.03	0.46	4.62	0.70	12	1.45	1.00	0.46	4.62	1.17
Naples Bay	East Lake	11B	Total Organic Carbon	20-Oct	21-Sep	12	13.64	14.50	7.60	17.30	3.40	12	13.64	14.50	7.60	17.30	3.40
Naples Bay	East Lake	11B	Total Phosphorus	14-Dec	21-Sep	37	0.10	0.08	0.02	0.40	0.07	12	0.06	0.05	0.03	0.10	0.02
Naples Bay	East Lake	11B	Total Suspended Solids	14-Dec	21-Sep	37	5.2	5.0	0.3	14.4	3.5	12	6.7	6.0	0.7	14.4	4.1
Naples Bay	East Lake	11B	Turbidity	14-Dec	21-Sep	37	3.5	2.7	0.8	12.1	2.6	12	4.7	3.1	1.9	12.1	3.6
Naples Bay	Half Moon Lake	24B	Chlorophyll-a, Corrected	14-Dec	20-Aug	25	126.9	113.0	55.6	255.0	54.2	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Conductivity	14-Dec	20-Aug	25	1328	1309	1085	1593	113	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Copper	14-Dec	20-Aug	25	3.01	2.13	0.50	13.00	3.01	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Dissolved Oxygen	14-Dec	20-Aug	25	4.71	4.22	0.87	10.66	2.74	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Dissolved Oxygen, Saturation	14-Dec	20-Aug	25	56.4	51.2	12.1	127.7	30.2	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Enterococci	14-Dec	20-Aug	25	873	450	110	3300	910	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Fecal Coliform	14-Dec	20-Aug	25	897	430	70	5100	1194	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Total Hardness, CaCO3	14-Dec	20-Aug	20	324.7	316.0	271.0	512.0	48.1	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Ammonia	14-Dec	20-Aug	25	0.28	0.18	0.00	1.62	0.35	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Nitrate+Nitrite	14-Dec	20-Aug	25	0.21	0.06	0.00	0.71	0.24	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Orthophosphate	14-Dec	20-Aug	25	1.51	1.61	0.44	2.70	0.62	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	рН	14-Dec	20-Aug	25	8.2	8.1	6.9	8.8	0.5	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Salinity	14-Dec	20-Aug	25	0.66	0.65	0.59	0.80	0.05	-	-	-	-	-	_
Naples Bay	Half Moon Lake	24B	Temperature	14-Dec	20-Aug	25	25.3	25.1	17.5	31.7	4.1	-	-	-	-	-	-

Dusing as								POR					FY20-21 (C	October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Naples Bay	Half Moon Lake	24B	Total Kjeldahl Nitrogen	14-Dec	20-Aug	25	3.46	3.35	0.68	5.29	0.91	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Total Nitrogen	14-Dec	20-Aug	25	3.67	3.62	0.72	5.72	0.97	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Total Phosphorus	14-Dec	20-Aug	25	2.16	2.17	0.98	5.54	0.91	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Total Suspended Solids	14-Dec	20-Aug	25	22.8	21.3	10.6	40.8	8.9	-	-	-	-	-	-
Naples Bay	Half Moon Lake	24B	Turbidity	14-Dec	20-Aug	25	11.2	10.4	6.2	21.2	3.8	-	-	-	-	-	-
Naples Bay	Lake 13	13B	Calcium	20-Nov	21-Sep	11	164.45	110.00	55.70	485.00	128.45	11	164.45	110.00	55.70	485.00	128.45
Naples Bay	Lake 13	13B	Chlorophyll-a, Corrected	20-Oct	21-Sep	12	58.3	52.7	6.4	177.0	49.7	12	58.3	52.7	6.4	177.0	49.7
Naples Bay	Lake 13	13B	Color, Apparent	20-Oct	21-Sep	12	161	170	70	400	95	12	161	170	70	400	95
Naples Bay	Lake 13	13B	Color pH	20-Oct	21-Sep	12	7.62	7.73	7.28	7.87	0.22	12	7.62	7.73	7.28	7.87	0.22
Naples Bay	Lake 13	13B	Conductivity	20-Oct	21-Sep	12	14823	7898	2001	43426	14847	12	14823	7898	2001	43426	14847
Naples Bay	Lake 13	13B	Copper	20-Oct	21-Sep	12	0.71	0.76	0.14	1.20	0.39	12	0.71	0.76	0.14	1.20	0.39
Naples Bay	Lake 13	13B	Dissolved Oxygen	20-Oct	21-Sep	12	4.46	3.02	0.20	18.30	4.84	12	4.46	3.02	0.20	18.30	4.84
Naples Bay	Lake 13	13B	Dissolved Organic Carbon	20-Oct	21-Sep	12	12.70	11.85	5.74	21.50	5.06	12	12.70	11.85	5.74	21.50	5.06
Naples Bay	Lake 13	13B	Dissolved Oxygen, Saturation	20-Oct	21-Sep	12	54.0	28.5	2.9	274.2	72.7	12	54.0	28.5	2.9	274.2	72.7
Naples Bay	Lake 13	13B	E. coli	20-Oct	21-Sep	12	1761	454	134	7701	2423	12	1761	454	134	7701	2423
Naples Bay	Lake 13	13B	Enterococci	20-Oct	21-Sep	12	538	245	10	2600	734	12	538	245	10	2600	734
Naples Bay	Lake 13	13B	Total Hardness, CaCO3	20-Oct	21-Sep	12	1488.9	842.5	334.0	4771.0	1474.1	12	1488.9	842.5	334.0	4771.0	1474.1
Naples Bay	Lake 13	13B	Magnesium	20-Nov	21-Sep	11	285.02	209.00	37.70	868.00	294.97	11	285.02	209.00	37.70	868.00	294.97
Naples Bay	Lake 13	13B	Ammonia	20-Oct	21-Sep	12	0.18	0.12	0.00	0.65	0.20	12	0.18	0.12	0.00	0.65	0.20
Naples Bay	Lake 13	13B	Nitrate+Nitrite	20-Oct	21-Sep	12	0.01	0.01	0.00	0.09	0.02	12	0.01	0.01	0.00	0.09	0.02
Naples Bay	Lake 13	13B	Orthophosphate	20-Oct	21-Sep	12	0.07	0.09	0.01	0.13	0.04	12	0.07	0.09	0.01	0.13	0.04
Naples Bay	Lake 13	13B	рН	20-Oct	21-Sep	12	7.5	7.4	6.9	8.7	0.4	12.0	7.5	7.4	6.9	8.7	0.4
Naples Bay	Lake 13	13B	Salinity	20-Oct	21-Sep	12	9.00	4.36	1.01	27.87	9.50	12	9.00	4.36	1.01	27.87	9.50
Naples Bay	Lake 13	13B	Temperature	20-Oct	21-Sep	12	27.5	29.1	19.1	31.4	4.0	12.0	27.5	29.1	19.1	31.4	4.0
Naples Bay	Lake 13	13B	Total Kjeldahl Nitrogen	20-Oct	21-Sep	12	1.29	0.98	0.10	2.53	0.79	12	1.29	0.98	0.10	2.53	0.79

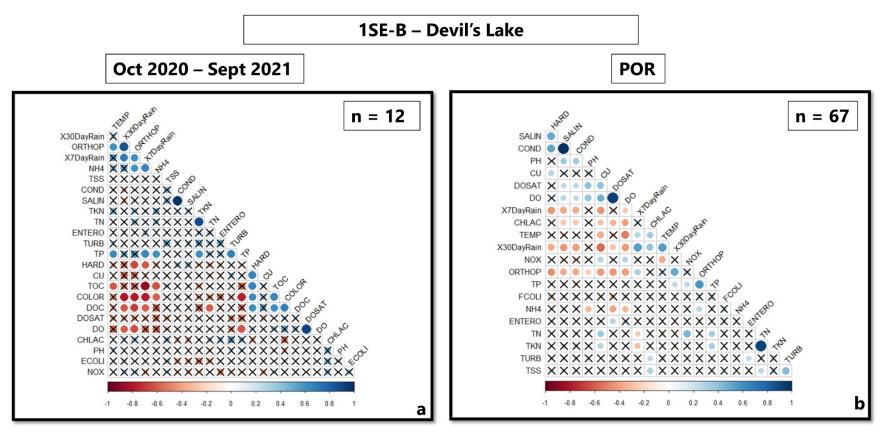
Dreinene								POR					FY20-21 (0	October 202	20-Septen	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Naples Bay	Lake 13	13B	Total Nitrogen	20-Oct	21-Sep	12	1.31	0.99	0.10	2.55	0.79	12	1.31	0.99	0.10	2.55	0.79
Naples Bay	Lake 13	13B	Total Organic Carbon	20-Oct	21-Sep	12	14.20	13.00	6.19	23.60	5.41	12	14.20	13.00	6.19	23.60	5.41
Naples Bay	Lake 13	13B	Total Phosphorus	20-Oct	21-Sep	12	0.13	0.13	0.01	0.24	0.07	12	0.13	0.13	0.01	0.24	0.07
Naples Bay	Lake 13	13B	Total Suspended Solids	20-Oct	21-Sep	12	12.8	10.8	1.6	44.8	10.8	12	12.8	10.8	1.6	44.8	10.8
Naples Bay	Lake 13	13B	Turbidity	20-Oct	21-Sep	12	6.9	5.0	2.9	19.5	4.7	12	6.9	5.0	2.9	19.5	4.7
Naples Bay	Lantern Lake	14B	Calcium	20-Nov	21-Sep	11	151.55	144.00	96.10	255.00	42.49	11	151.55	144.00	96.10	255.00	42.49
Naples Bay	Lantern Lake	14B	Chlorophyll-a, Corrected	14-Dec	21-Sep	37	63.3	51.4	1.9	266.0	47.0	12	47.0	43.3	1.9	109.0	29.8
Naples Bay	Lantern Lake	14B	Color, Apparent	20-Oct	21-Sep	12	115	120	30	180	38	12	115	120	30	180	38
Naples Bay	Lantern Lake	14B	Color pH	20-Oct	21-Sep	12	7.82	7.74	7.53	8.31	0.27	12	7.82	7.74	7.53	8.31	0.27
Naples Bay	Lantern Lake	14B	Conductivity	14-Dec	21-Sep	37	8369	8573	5526	13598	1487	12	8439	8627	5892	10846	1472
Naples Bay	Lantern Lake	14B	Copper	14-Dec	21-Sep	37	6.53	3.07	0.14	99.30	16.14	12	1.89	1.40	0.14	4.48	1.65
Naples Bay	Lantern Lake	14B	Dissolved Oxygen	14-Dec	21-Sep	37	5.36	4.68	1.49	12.37	2.89	12	5.28	4.78	1.72	10.28	2.70
Naples Bay	Lantern Lake	14B	Dissolved Organic Carbon	20-Oct	21-Sep	12	6.91	7.12	3.59	9.79	1.73	12	6.91	7.12	3.59	9.79	1.73
Naples Bay	Lantern Lake	14B	Dissolved Oxygen, Saturation	14-Dec	21-Sep	37	67.2	60.2	19.3	147.2	34.3	12	68.8	58.4	22.9	137.9	35.5
Naples Bay	Lantern Lake	14B	E. coli	20-Oct	21-Sep	12	597	382	120	2909	758	12	597	382	120	2909	758
Naples Bay	Lantern Lake	14B	Enterococci	14-Dec	21-Sep	37	419	150	20	5000	914	12	578	95	20	5000	1411
Naples Bay	Lantern Lake	14B	Fecal Coliform	14-Dec	20-Aug	25	407	160	20	2500	630	-	-	-	-	-	-
Naples Bay	Lantern Lake	14B	Total Hardness, CaCO3	18-May	21-Sep	22	1164.9	1147.0	611.0	1950.0	293.0	12	1174.0	1128.5	611.0	1950.0	356.0
Naples Bay	Lantern Lake	14B	Magnesium	20-Nov	21-Sep	11	185.14	183.00	90.50	320.00	60.04	11	185.14	183.00	90.50	320.00	60.04
Naples Bay	Lantern Lake	14B	Ammonia	14-Dec	21-Sep	37	0.13	0.05	0.00	0.97	0.21	12	0.20	0.08	0.01	0.70	0.22
Naples Bay	Lantern Lake	14B	Nitrate+Nitrite	14-Dec	21-Sep	37	0.04	0.01	0.00	0.26	0.06	12	0.01	0.01	0.00	0.09	0.02
Naples Bay	Lantern Lake	14B	Orthophosphate	14-Dec	21-Sep	37	0.27	0.20	0.00	0.68	0.20	12	0.26	0.20	0.05	0.55	0.18
Naples Bay	Lantern Lake	14B	рН	14-Dec	21-Sep	37	7.7	7.7	7.1	8.6	0.4	12.0	7.7	7.5	7.3	8.6	0.4
Naples Bay	Lantern Lake	14B	Salinity	14-Dec	21-Sep	37	4.74	4.78	2.95	7.88	1.01	12	4.68	4.79	3.16	6.10	0.88
Naples Bay	Lantern Lake	14B	Temperature	14-Dec	21-Sep	37	26.4	26.6	18.6	32.1	3.8	12.0	27.5	28.3	20.4	31.6	3.5

Ducing as								POR					FY20-21 (October 202	20-Septem	ber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Naples Bay	Lantern Lake	14B	Total Kjeldahl Nitrogen	14-Dec	21-Sep	37	1.70	1.63	0.95	2.56	0.43	12	1.46	1.40	0.95	2.20	0.37
Naples Bay	Lantern Lake	14B	Total Nitrogen	14-Dec	21-Sep	37	1.73	1.64	0.95	2.75	0.46	12	1.47	1.41	0.95	2.20	0.37
Naples Bay	Lantern Lake	14B	Total Organic Carbon	20-Oct	21-Sep	12	8.80	7.74	6.42	12.40	2.20	12	8.80	7.74	6.42	12.40	2.20
Naples Bay	Lantern Lake	14B	Total Phosphorus	14-Dec	21-Sep	37	0.43	0.38	0.06	1.04	0.25	12	0.36	0.35	0.08	0.64	0.18
Naples Bay	Lantern Lake	14B	Total Suspended Solids	14-Dec	21-Sep	37	18.9	13.7	4.0	58.0	14.3	12	13.5	10.3	6.5	32.0	8.0
Naples Bay	Lantern Lake	14B	Turbidity	14-Dec	21-Sep	37	10.4	10.4	2.5	24.2	5.4	12	7.0	6.3	2.5	15.3	3.7
Naples Bay	Spring Lake	11C	Calcium	20-Nov	21-Sep	11	71.38	69.30	46.90	91.80	16.13	11	71.38	69.30	46.90	91.80	16.13
Naples Bay	Spring Lake	11C	Chlorophyll-a, Corrected	20-Oct	21-Sep	12	75.6	37.8	9.0	323.0	101.9	12	75.6	37.8	9.0	323.0	101.9
Naples Bay	Spring Lake	11C	Color, Apparent	20-Oct	21-Sep	12	128	130	80	260	49	12	128	130	80	260	49
Naples Bay	Spring Lake	11C	Color pH	20-Oct	21-Sep	12	8.22	8.27	7.49	8.94	0.41	12	8.22	8.27	7.49	8.94	0.41
Naples Bay	Spring Lake	11C	Conductivity	20-Oct	21-Sep	12	630	667	456	738	94	12	630	667	456	738	94
Naples Bay	Spring Lake	11C	Copper	20-Oct	21-Sep	12	6.14	6.30	0.17	12.20	4.05	12	6.14	6.30	0.17	12.20	4.05
Naples Bay	Spring Lake	11C	Dissolved Oxygen	20-Oct	21-Sep	12	8.54	9.62	0.67	13.83	4.12	12	8.54	9.62	0.67	13.83	4.12
Naples Bay	Spring Lake	11C	Dissolved Organic Carbon	20-Oct	21-Sep	12	13.41	14.45	4.19	22.30	4.63	12	13.41	14.45	4.19	22.30	4.63
Naples Bay	Spring Lake	11C	Dissolved Oxygen, Saturation	20-Oct	21-Sep	12	105.7	107.8	8.7	178.7	51.0	12	105.7	107.8	8.7	178.7	51.0
Naples Bay	Spring Lake	11C	E. coli	20-Oct	21-Sep	12	554	300	74	1500	476	12	554	300	74	1500	476
Naples Bay	Spring Lake	11C	Enterococci	20-Oct	21-Sep	12	448	200	5	2200	719	12	448	200	5	2200	719
Naples Bay	Spring Lake	11C	Total Hardness, CaCO3	20-Oct	21-Sep	12	203.2	197.0	134.0	258.0	42.3	12	203.2	197.0	134.0	258.0	42.3
Naples Bay	Spring Lake	11C	Magnesium	20-Nov	21-Sep	11	6.16	6.02	3.82	10.30	1.85	11	6.16	6.02	3.82	10.30	1.85
Naples Bay	Spring Lake	11C	Ammonia	20-Oct	21-Sep	12	0.07	0.01	0.00	0.67	0.19	12	0.07	0.01	0.00	0.67	0.19
Naples Bay	Spring Lake	11C	Nitrate+Nitrite	20-Oct	21-Sep	12	0.03	0.00	0.00	0.17	0.06	12	0.03	0.00	0.00	0.17	0.06
Naples Bay	Spring Lake	11C	Orthophosphate	20-Oct	21-Sep	12	0.02	0.02	0.00	0.06	0.02	12	0.02	0.02	0.00	0.06	0.02
Naples Bay	Spring Lake	11C	рН	20-Oct	21-Sep	12	8.0	7.9	7.2	9.0	0.6	12.0	8.0	7.9	7.2	9.0	0.6
Naples Bay	Spring Lake	11C	Salinity	20-Oct	21-Sep	12	0.30	0.32	0.22	0.36	0.05	12	0.30	0.32	0.22	0.36	0.05
Naples Bay	Spring Lake	11C	Temperature	20-Oct	21-Sep	12	27.0	28.6	19.9	30.3	3.4	12.0	27.0	28.6	19.9	30.3	3.4

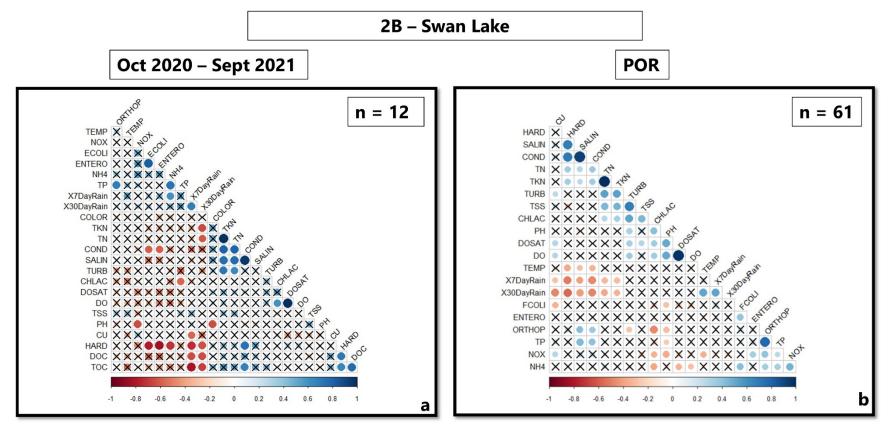
During								POR					FY20-21 (0	October 20	20-Septer	nber 2021)	
Drainage Basin	Lake Name	Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Naples Bay	Spring Lake	11C	Total Kjeldahl Nitrogen	20-Oct	21-Sep	12	1.52	0.95	0.73	3.78	1.07	12	1.52	0.95	0.73	3.78	1.07
Naples Bay	Spring Lake	11C	Total Nitrogen	20-Oct	21-Sep	12	1.55	0.95	0.73	3.95	1.11	12	1.55	0.95	0.73	3.95	1.11
Naples Bay	Spring Lake	11C	Total Organic Carbon	20-Oct	21-Sep	12	13.85	14.85	5.75	19.00	3.63	12	13.85	14.85	5.75	19.00	3.63
Naples Bay	Spring Lake	11C	Total Phosphorus	20-Oct	21-Sep	12	0.07	0.06	0.04	0.14	0.03	12	0.07	0.06	0.04	0.14	0.03
Naples Bay	Spring Lake	11C	Total Suspended Solids	20-Oct	21-Sep	12	7.3	5.7	0.3	17.5	4.7	12	7.3	5.7	0.3	17.5	4.7
Naples Bay	Spring Lake	11C	Turbidity	20-Oct	21-Sep	12	6.4	3.6	2.1	24.3	6.9	12	6.4	3.6	2.1	24.3	6.9
Pump Stations	Cove Pump	11-Pump	Calcium	20-Nov	21-Sep	11	93.17	98.30	69.20	114.00	16.19	11	93.17	98.30	69.20	114.00	16.19
Pump Stations	Cove Pump	11-Pump	Color, Apparent	20-Oct	21-Sep	12	128	140	90	160	24	12	128	140	90	160	24
Pump Stations	Cove Pump	11-Pump	Color pH	20-Oct	21-Sep	12	7.54	7.54	7.22	7.79	0.15	12	7.54	7.54	7.22	7.79	0.15
Pump Stations	Cove Pump	11-Pump	Conductivity	14-Dec	21-Sep	36	1553	1391	984	3649	546	12	1374	1335	984	1802	237
Pump Stations	Cove Pump	11-Pump	Copper	14-Dec	21-Sep	36	2.57	1.83	0.17	15.50	2.77	12	2.12	2.10	0.17	5.73	1.41
Pump Stations	Cove Pump	11-Pump	Dissolved Oxygen	14-Dec	21-Sep	36	4.71	4.87	1.88	6.53	0.99	12	4.56	4.70	3.39	5.40	0.65
Pump Stations	Cove Pump	11-Pump	Dissolved Organic Carbon	20-Oct	21-Sep	12	14.35	13.85	8.50	20.10	3.65	12	14.35	13.85	8.50	20.10	3.65
Pump Stations	Cove Pump	11-Pump	Dissolved Oxygen, Saturation	14-Dec	21-Sep	36	58.7	61.7	24.7	80.4	11.9	12	56.9	57.1	43.3	64.5	7.2
Pump Stations	Cove Pump	11-Pump	E. coli	20-Oct	21-Sep	12	546	282	52	3076	825	12	546	282	52	3076	825
Pump Stations	Cove Pump	11-Pump	Enterococci	14-Dec	21-Sep	36	3232	1750	400	14900	4075	12	3575	2600	470	14800	4048
Pump Stations	Cove Pump	11-Pump	Fecal Coliform	14-Dec	20-Aug	24	3294	1200	50	17900	4505	-	-	-	-	-	-
Pump Stations	Cove Pump	11-Pump	Total Hardness, CaCO3	14-Dec	21-Sep	32	322.0	319.0	221.0	415.0	52.0	12	308.8	319.0	221.0	387.0	58.5
Pump Stations	Cove Pump	11-Pump	Magnesium	20-Nov	21-Sep	11	18.63	18.70	10.70	25.30	5.24	11	18.63	18.70	10.70	25.30	5.24
Pump Stations	Cove Pump	11-Pump	Ammonia	14-Dec	21-Sep	36	0.32	0.31	0.17	0.52	0.07	12	0.33	0.30	0.24	0.52	0.09
Pump Stations	Cove Pump	11-Pump	Nitrate+Nitrite	14-Dec	21-Sep	36	0.31	0.30	0.11	0.50	0.09	12	0.27	0.30	0.11	0.39	0.09
Pump Stations	Cove Pump	11-Pump	Orthophosphate	14-Dec	21-Sep	36	0.10	0.11	0.04	0.14	0.02	12	0.09	0.10	0.04	0.12	0.03
Pump Stations	Cove Pump	11-Pump	рН	14-Dec	21-Sep	36	7.4	7.4	7.0	7.9	0.2	12.0	7.3	7.3	7.0	7.5	0.1
Pump Stations	Cove Pump	11-Pump	Salinity	14-Dec	21-Sep	36	0.78	0.70	0.48	1.92	0.29	12	0.69	0.67	0.48	0.91	0.13
Pump Stations	Cove Pump	11-Pump	Temperature	14-Dec	21-Sep	36	26.4	26.5	22.8	29.3	1.9	12.0	26.5	26.8	22.8	29.3	2.2

Drainage Basin	Lake Name	Station ID	Parameter					POR		FY20-21 (C	October 202	20-Septen	MaxSD2.170.392.340.3720.503.100.130.025.32.13.50.8286.0064.02200477.690.09410381263946.0013.744.890.7114.003.2866.110.958317523007223976.01039.6818.00230.390.550.150.470.110.830.187.80.2				
				First Sample	Last Sample	Sample Count	Mean	Median	Min	Max	SD	Sample Count	Mean	Median	Min	Мах	SD
Pump Stations	Cove Pump	11-Pump	Total Kjeldahl Nitrogen	14-Dec	21-Sep	36	1.10	1.04	0.50	2.17	0.26	12	1.10	1.00	0.50	2.17	0.39
Pump Stations	Cove Pump	11-Pump	Total Nitrogen	14-Dec	21-Sep	36	1.40	1.38	0.81	2.34	0.26	12	1.37	1.32	0.81	2.34	0.37
Pump Stations	Cove Pump	11-Pump	Total Organic Carbon	20-Oct	21-Sep	12	15.27	14.90	9.06	20.50	3.10	12	15.27	14.90	9.06	20.50	3.10
Pump Stations	Cove Pump	11-Pump	Total Phosphorus	14-Dec	21-Sep	36	0.13	0.13	0.06	0.21	0.03	12	0.11	0.11	0.06	0.13	0.02
Pump Stations	Cove Pump	11-Pump	Total Suspended Solids	14-Dec	21-Sep	36	3.9	1.6	0.3	46.7	8.9	12	2.1	1.1	0.3	5.3	2.1
Pump Stations	Cove Pump	11-Pump	Turbidity	14-Dec	21-Sep	36	3.1	2.1	1.0	33.1	5.2	12	1.6	1.4	1.0	3.5	0.8
Pump Stations	Port Royal Pump	14-Pump	Calcium	20-Nov	21-Sep	11	166.73	144.00	100.00	286.00	64.02	11	166.73	144.00	100.00	286.00	64.02
Pump Stations	Port Royal Pump	14-Pump	Color, Apparent	20-Oct	21-Sep	12	86	85	20	200	47	12	86	85	20	200	47
Pump Stations	Port Royal Pump	14-Pump	Color pH	20-Oct	21-Sep	12	7.50	7.50	7.34	7.69	0.09	12	7.50	7.50	7.34	7.69	0.09
Pump Stations	Port Royal Pump	14-Pump	Conductivity	14-Dec	21-Sep	36	15877	9719	3871	41261	11383	12	13301	7785	3871	41038	12639
Pump Stations	Port Royal Pump	14-Pump	Copper	14-Dec	21-Sep	36	5.13	2.34	0.12	46.00	8.74	12	8.71	3.38	0.14	46.00	13.74
Pump Stations	Port Royal Pump	14-Pump	Dissolved Oxygen	14-Dec	21-Sep	36	3.76	3.69	2.03	6.11	1.00	12	3.86	3.77	2.89	4.89	0.71
Pump Stations	Port Royal Pump	14-Pump	Dissolved Organic Carbon	20-Oct	21-Sep	12	9.40	10.08	4.47	14.00	3.28	12	9.40	10.08	4.47	14.00	3.28
Pump Stations	Port Royal Pump	14-Pump	Dissolved Oxygen, Saturation	14-Dec	21-Sep	36	49.2	45.5	25.0	79.4	13.0	12	50.6	47.2	36.2	66.1	10.9
Pump Stations	Port Royal Pump	14-Pump	E. coli	20-Oct	21-Sep	12	300	262	41	583	175	12	300	262	41	583	175
Pump Stations	Port Royal Pump	14-Pump	Enterococci	14-Dec	21-Sep	36	1030	550	80	5200	1168	12	832	535	80	2300	722
Pump Stations	Port Royal Pump	14-Pump	Fecal Coliform	14-Dec	20-Aug	24	1533	475	10	9500	2303	-	-	-	-	-	-
Pump Stations	Port Royal Pump	14-Pump	Total Hardness, CaCO3	18-May	21-Sep	22	1710.0	1319.0	545.0	3976.0	1062.9	12	1459.4	1019.5	545.0	3976.0	1039.6
Pump Stations	Port Royal Pump	14-Pump	Magnesium	20-Nov	21-Sep	11	261.16	151.00	70.20	818.00	230.39	11	261.16	151.00	70.20	818.00	230.39
Pump Stations	Port Royal Pump	14-Pump	Ammonia	14-Dec	21-Sep	36	0.37	0.34	0.00	1.10	0.20	12	0.38	0.43	0.00	0.55	0.15
Pump Stations	Port Royal Pump	14-Pump	Nitrate+Nitrite	14-Dec	21-Sep	36	0.18	0.17	0.06	0.47	0.09	12	0.22	0.19	0.06	0.47	0.11
Pump Stations	Port Royal Pump	14-Pump	Orthophosphate	14-Dec	21-Sep	36	0.36	0.32	0.06	1.15	0.21	12	0.36	0.31	0.13	0.83	0.18
Pump Stations	Port Royal Pump	14-Pump	рН	14-Dec	21-Sep	36	7.2	7.2	6.4	7.8	0.3	12.0	7.3	7.3	7.2	7.8	0.2
Pump Stations	Port Royal Pump	14-Pump	Salinity	14-Dec	21-Sep	36	9.51	5.45	2.03	26.28	7.38	12	7.93	4.30	2.03	26.22	8.27
Pump Stations	Port Royal Pump	14-Pump	Temperature	14-Dec	21-Sep	36	26.2	26.1	20.2	31.0	3.0	12.0	26.5	27.0	20.9	31.0	3.0

Drainage Basin	Lake Name							POR		FY20-21 (0	October 202	20-Septem	ber 2021)	-			
		Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD
Pump Stations	Port Royal Pump	14-Pump	Total Kjeldahl Nitrogen	14-Dec	21-Sep	36	1.47	1.34	0.44	4.81	0.84	12	1.17	1.04	0.44	2.11	0.45
Pump Stations	Port Royal Pump	14-Pump	Total Nitrogen	14-Dec	21-Sep	36	1.65	1.52	0.50	4.91	0.84	12	1.39	1.39	0.50	2.43	0.49
Pump Stations	Port Royal Pump	14-Pump	Total Organic Carbon	20-Oct	21-Sep	12	10.65	11.00	4.80	14.40	3.37	12	10.65	11.00	4.80	14.40	3.37
Pump Stations	Port Royal Pump	14-Pump	Total Phosphorus	14-Dec	21-Sep	36	0.43	0.43	0.12	1.21	0.23	12	0.39	0.33	0.14	0.90	0.20
Pump Stations	Port Royal Pump	14-Pump	Total Suspended Solids	14-Dec	21-Sep	36	10.5	8.5	1.0	48.4	10.6	12	8.5	8.4	1.0	21.6	6.0
Pump Stations	Port Royal Pump	14-Pump	Turbidity	14-Dec	21-Sep	36	-	-	-	-	-	12	4.3	2.6	1.4	19.7	5.2
Pump Stations	Public Works Pump	PW-Pump	Silver	14-Dec	20-Aug	24	0.03	0.01	0.01	0.25	0.05	-	-	-	-	-	-
Pump Stations	Public Works Pump	PW-Pump	Aresenic	14-Dec	20-Aug	24	2.67	3.03	0.34	5.82	1.35	-	-	-	-	-	-
Pump Stations	Public Works Pump	PW-Pump	Barium	14-Dec	20-Aug	24	15.88	15.05	0.02	39.80	7.29	-	-	-	-	-	-
Pump Stations	Public Works Pump	PW-Pump	Calcium	20-Nov	21-Sep	11	97.60	102.00	68.40	133.00	21.30	11	97.60	102.00	68.40	133.00	21.30
Pump Stations	Public Works Pump	PW-Pump	Cadmium	14-Dec	20-Aug	24	0.67	0.45	0.45	2.20	0.46	-	-	-	-	-	-
Pump Stations	Public Works Pump	PW-Pump	Color, Apparent	20-Oct	21-Sep	12	135	140	100	160	23	12	135	140	100	160	23
Pump Stations	Public Works Pump	PW-Pump	Color pH	20-Oct	21-Sep	12	7.53	7.56	7.28	7.69	0.11	12	7.53	7.56	7.28	7.69	0.11
Pump Stations	Public Works Pump	PW-Pump	Conductivity	14-Dec	21-Sep	36	2528	1428	720	14189	2748	12	1420	1382	739	2867	587
Pump Stations	Public Works Pump	PW-Pump	Chromium	14-Dec	20-Aug	24	4.43	4.05	0.00	11.50	2.52	-	-	-	-	-	-
Pump Stations	Public Works Pump	PW-Pump	Copper	14-Dec	21-Sep	36	4.23	3.21	0.14	21.40	3.86	12	2.64	2.43	1.17	5.76	1.30
Pump Stations	Public Works Pump	PW-Pump	Dissolved Oxygen	14-Dec	21-Sep	36	4.08	4.16	1.84	5.87	1.07	12	4.26	4.18	3.47	5.03	0.49
Pump Stations	Public Works Pump	PW-Pump	Dissolved Organic Carbon	20-Oct	21-Sep	12	16.19	16.30	9.90	26.10	4.52	12	16.19	16.30	9.90	26.10	4.52
Pump Stations	Public Works Pump	PW-Pump	Dissolved Oxygen, Saturation	14-Dec	21-Sep	36	51.6	53.6	23.5	74.6	13.4	12	53.6	53.5	44.8	64.8	6.4
Pump Stations	Public Works Pump	PW-Pump	E. coli	20-Oct	21-Sep	12	514	200	98	1785	583	12	514	200	98	1785	583
Pump Stations	Public Works Pump	PW-Pump	Enterococci	14-Dec	21-Sep	36	1257	440	60	13400	2455	12	838	450	120	3200	1007
Pump Stations	Public Works Pump	PW-Pump	Fecal Coliform	14-Dec	20-Aug	24	3296	610	5	20000	5025	-	-	-	-	-	-
Pump Stations	Public Works Pump	PW-Pump	Total Hardness, CaCO3	15-Feb	21-Sep	30	428.7	333.0	132.0	1664.0	351.4	12	321.9	336.0	198.0	458.0	86.0
Pump Stations	Public Works Pump	PW-Pump	Mercury	15-May	20-Feb	20	2.12	1.43	0.57	6.60	1.87	-	-	-	-	-	-
Pump Stations	Public Works Pump	PW-Pump	Mercury	14-Dec	20-Aug	4	0.06	0.02	0.00	0.20	0.10	-	-	-	-	-	-

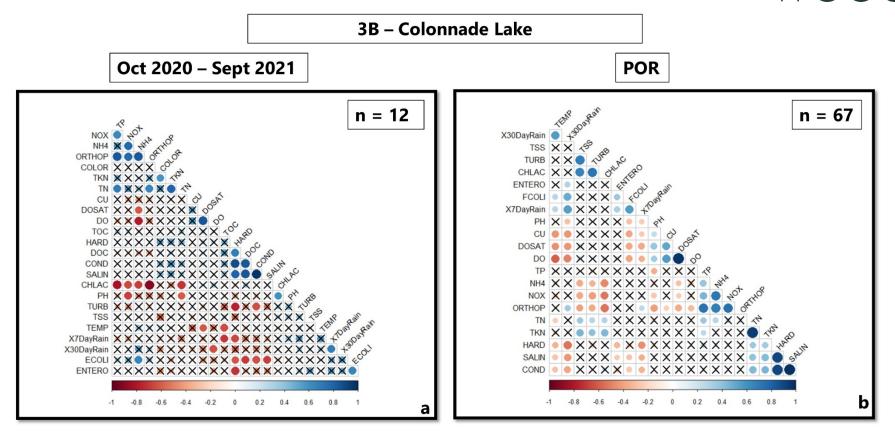


Drainage Basin	Lake Name							POR				FY20-21 (October 2020-September 2021)								
		Station ID	Parameter	First Sample	Last Sample	Sample Count	Mean	Median	Min	Мах	SD	Sample Count	Mean	Median	Min	Мах	SD			
Pump Stations	Public Works Pump	PW-Pump	Magnesium	20-Nov	21-Sep	11	18.74	16.60	6.52	51.00	12.82	11	18.74	16.60	6.52	51.00	12.82			
Pump Stations	Public Works Pump	PW-Pump	Ammonia	14-Dec	21-Sep	36	0.34	0.35	0.10	0.54	0.09	12	0.35	0.35	0.10	0.54	0.12			
Pump Stations	Public Works Pump	PW-Pump	Nitrate+Nitrite	14-Dec	21-Sep	36	0.24	0.23	0.10	0.68	0.10	12	0.23	0.24	0.10	0.34	0.06			
Pump Stations	Public Works Pump	PW-Pump	Orthophosphate	14-Dec	21-Sep	36	0.08	0.08	0.03	0.13	0.02	12	0.09	0.09	0.06	0.12	0.02			
Pump Stations	Public Works Pump	PW-Pump	Lead	14-Dec	20-Aug	24	1.38	0.34	0.34	19.10	3.83	-	-	-	-	-	-			
Pump Stations	Public Works Pump	PW-Pump	рН	14-Dec	21-Sep	36	7.3	7.3	6.9	7.8	0.2	12.0	7.3	7.3	7.1	7.5	0.1			
Pump Stations	Public Works Pump	PW-Pump	Petroleum Range Organics	14-Dec	20-May	14	3.91	0.05	0.03	50.00	13.28	-	-	-	-	-	-			
Pump Stations	Public Works Pump	PW-Pump	Petroleum Range Organics	18-Feb	20-Aug	10	50.00	50.00	50.00	50.00	0.00	-	-	-	-	-	-			
Pump Stations	Public Works Pump	PW-Pump	Salinity	14-Dec	21-Sep	36	1.34	0.75	0.35	8.18	1.57	12	0.71	0.69	0.36	1.47	0.31			
Pump Stations	Public Works Pump	PW-Pump	Selenium	14-Dec	20-Aug	24	3.27	1.90	0.01	14.80	3.78	-	-	-	-	-	-			
Pump Stations	Public Works Pump	PW-Pump	Temperature	14-Dec	21-Sep	36	26.8	26.9	23.8	30.4	1.8	12.0	26.7	26.8	23.8	30.4	2.0			
Pump Stations	Public Works Pump	PW-Pump	Total Kjeldahl Nitrogen	14-Dec	21-Sep	36	1.04	1.01	0.69	1.57	0.20	12	1.01	1.00	0.69	1.47	0.19			
Pump Stations	Public Works Pump	PW-Pump	Total Nitrogen	14-Dec	21-Sep	36	1.29	1.25	0.93	1.90	0.23	12	1.24	1.25	0.98	1.70	0.18			
Pump Stations	Public Works Pump	PW-Pump	Total Organic Carbon	20-Oct	21-Sep	12	17.31	17.75	10.70	26.40	4.51	12	17.31	17.75	10.70	26.40	4.51			
Pump Stations	Public Works Pump	PW-Pump	Total Phosphorus	14-Dec	21-Sep	36	0.11	0.10	0.05	0.32	0.05	12	0.10	0.09	0.07	0.18	0.03			
Pump Stations	Public Works Pump	PW-Pump	Total Suspended Solids	14-Dec	21-Sep	36	10.0	1.9	0.3	207.0	34.4	12	2.9	2.5	0.3	6.8	2.3			
Pump Stations	Public Works Pump	PW-Pump	Turbidity	14-Dec	21-Sep	36	12.4	2.3	0.8	273.0	45.7	12	1.9	1.7	0.8	4.6	1.2			



Appendix C – Water Quality Correlations for Naples Stormwater Stations

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation X=correlation is not significant, red=negative correlation, blue=positive correlation

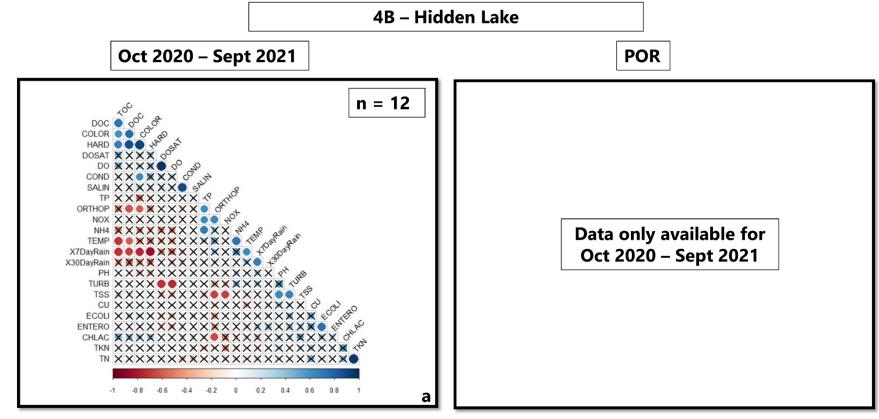


Note:

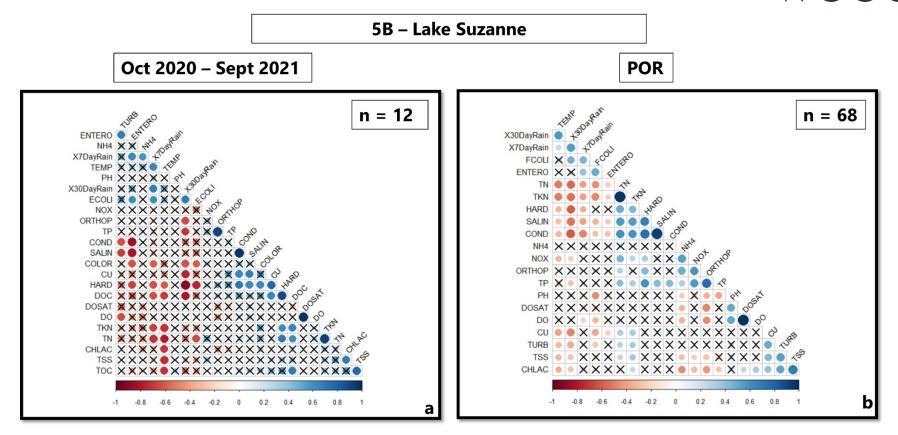
CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C2 Appendix C – Water Quality Correlations for Naples Stormwater Stations

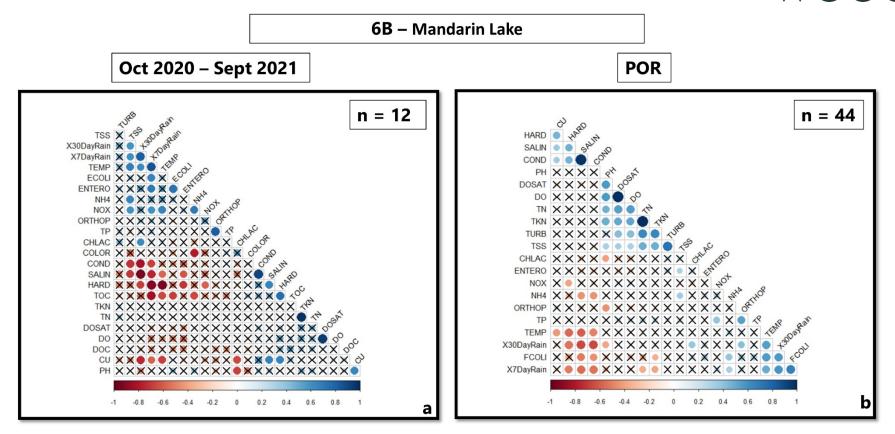

Note:

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation


X=correlation is not significant, red=negative correlation, blue=positive correlation

C3 Appendix C – Water Quality Correlations for Naples Stormwater Stations

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

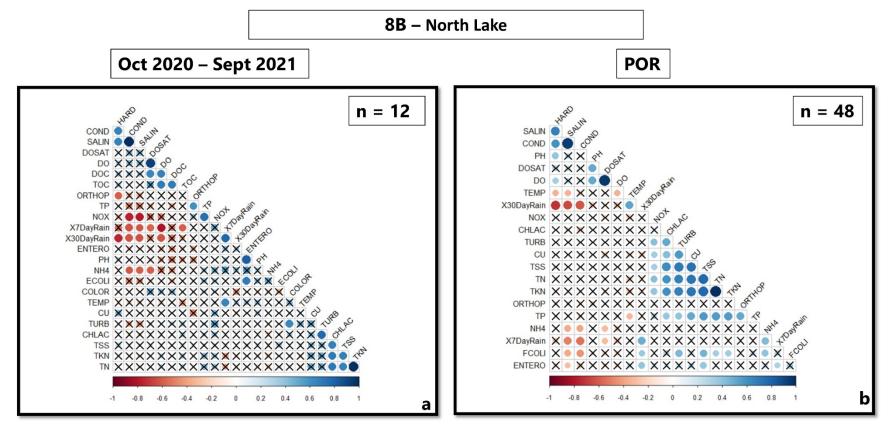


Note:

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C5 Appendix C – Water Quality Correlations for Naples Stormwater Stations

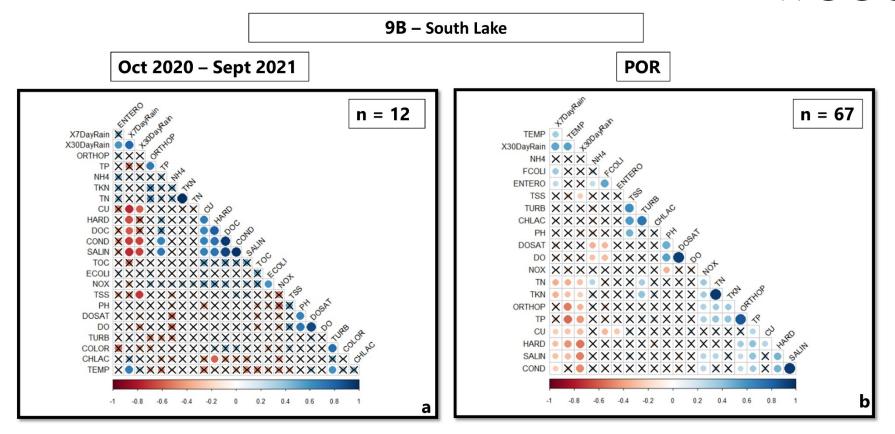


Note:

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C6 Appendix C – Water Quality Correlations for Naples Stormwater Stations

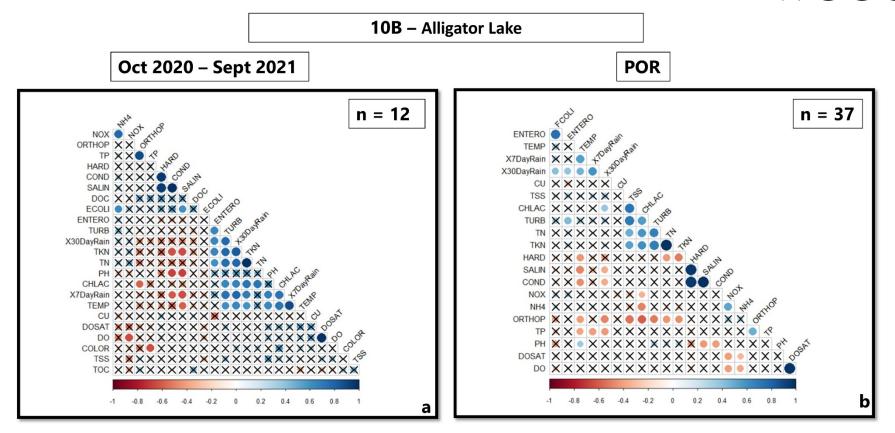


Note:

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C7 Appendix C – Water Quality Correlations for Naples Stormwater Stations

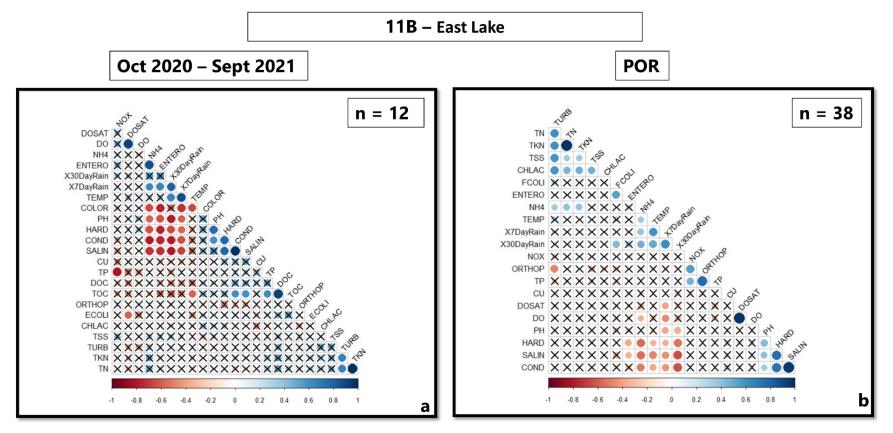


Note:

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C8 Appendix C – Water Quality Correlations for Naples Stormwater Stations

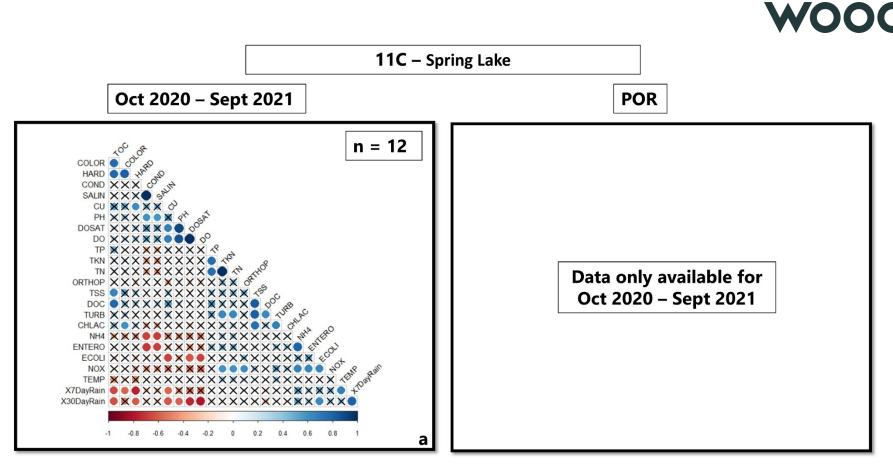


Note:

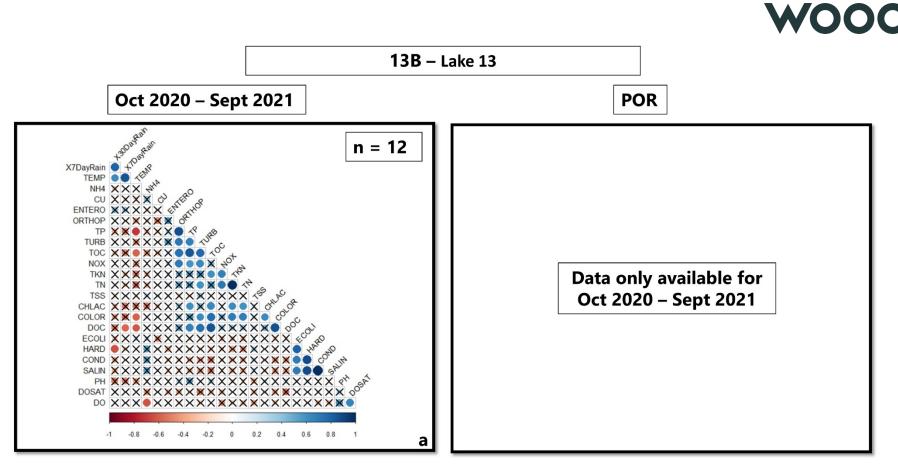
CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C9 Appendix C – Water Quality Correlations for Naples Stormwater Stations



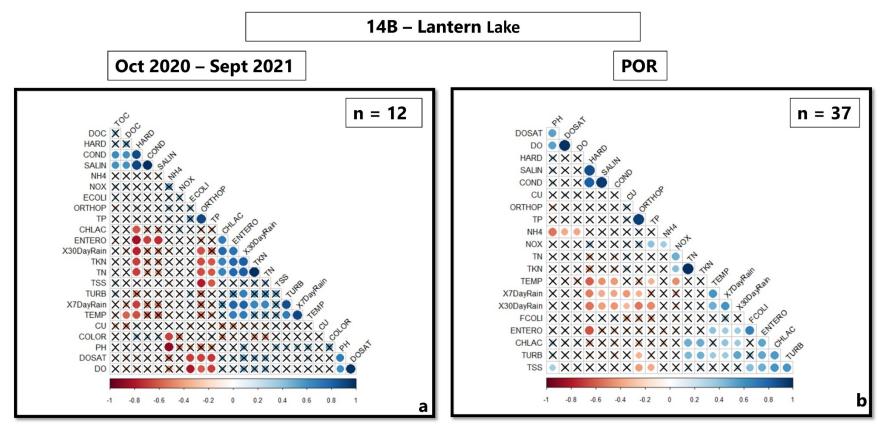
Note:


CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

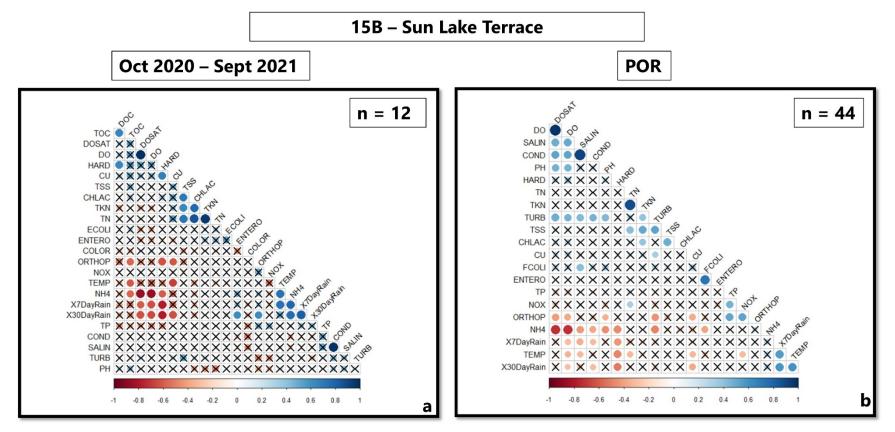
X=correlation is not significant, red=negative correlation, blue=positive correlation

C10 Appendix C – Water Quality Correlations for Naples Stormwater Stations

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

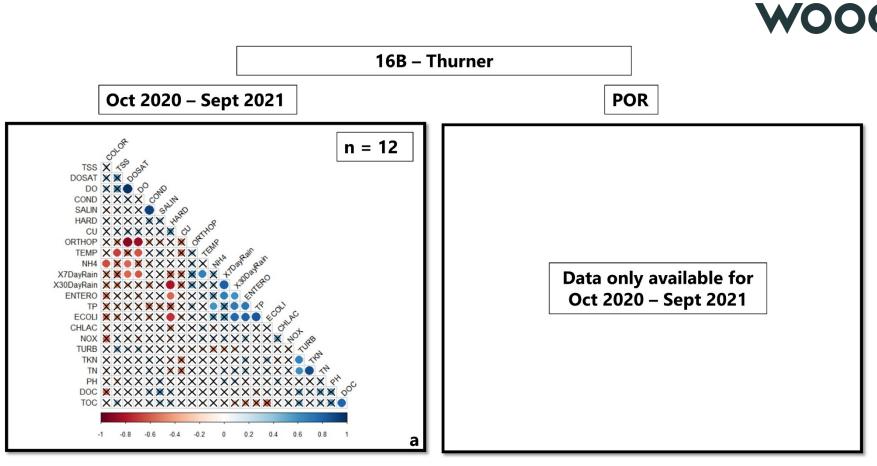


CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation


X=correlation is not significant, red=negative correlation, blue=positive correlation

C12 Appendix C – Water Quality Correlations for Naples Stormwater Stations

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

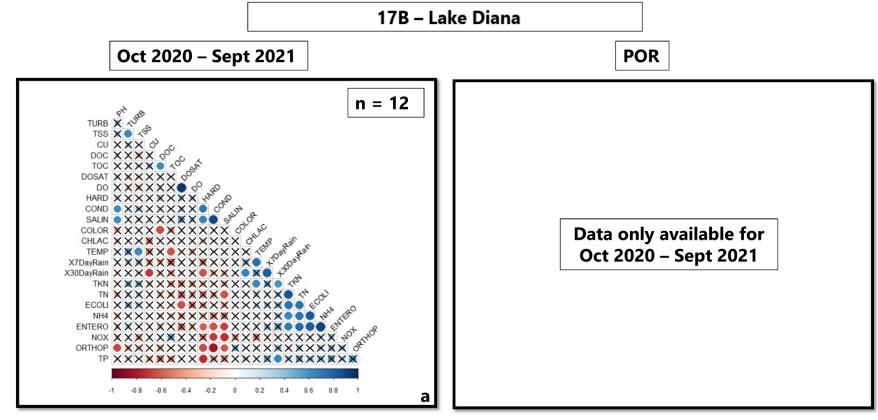


Note:

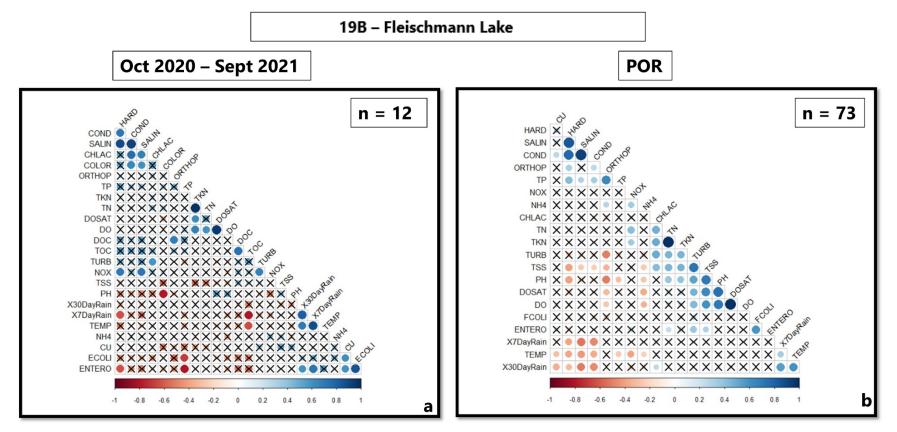
CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C14 Appendix C – Water Quality Correlations for Naples Stormwater Stations

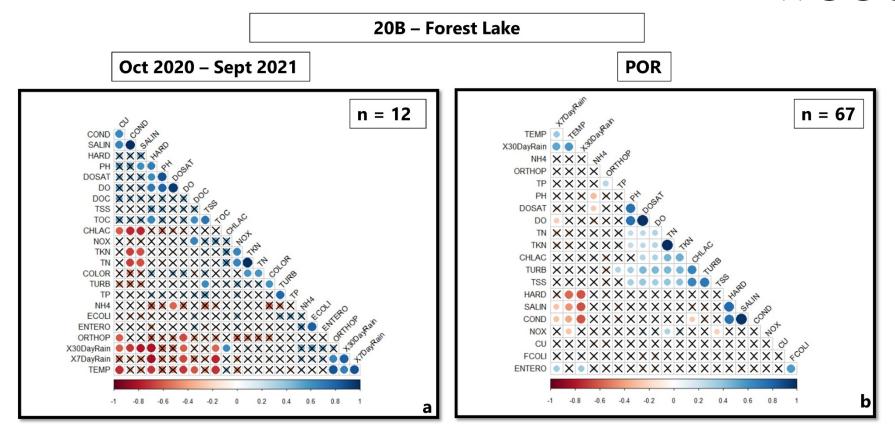


CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation


X=correlation is not significant, red=negative correlation, blue=positive correlation

C15 Appendix C – Water Quality Correlations for Naples Stormwater Stations

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

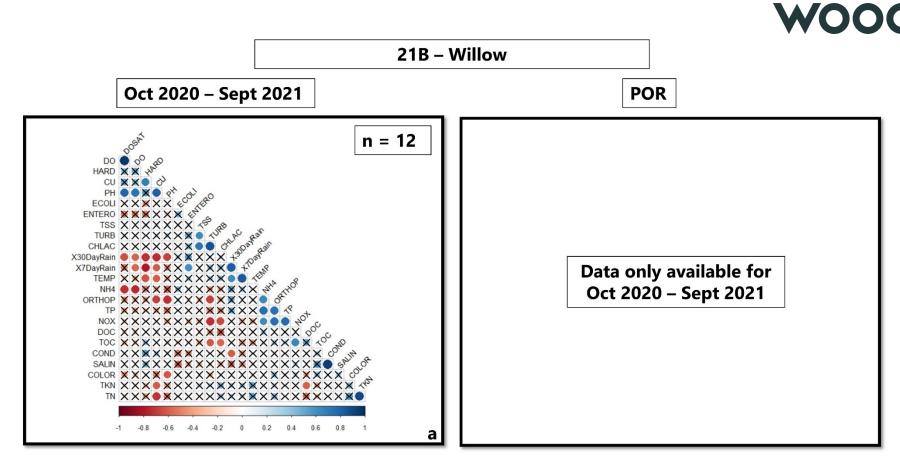


Note:

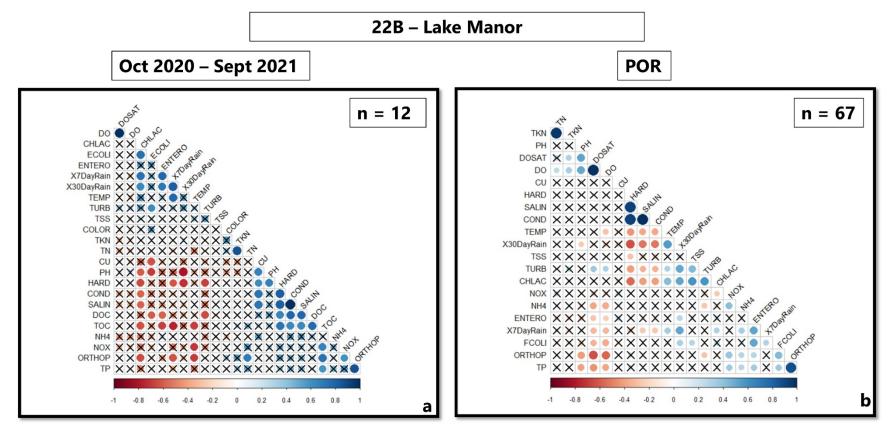
CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C17 Appendix C – Water Quality Correlations for Naples Stormwater Stations



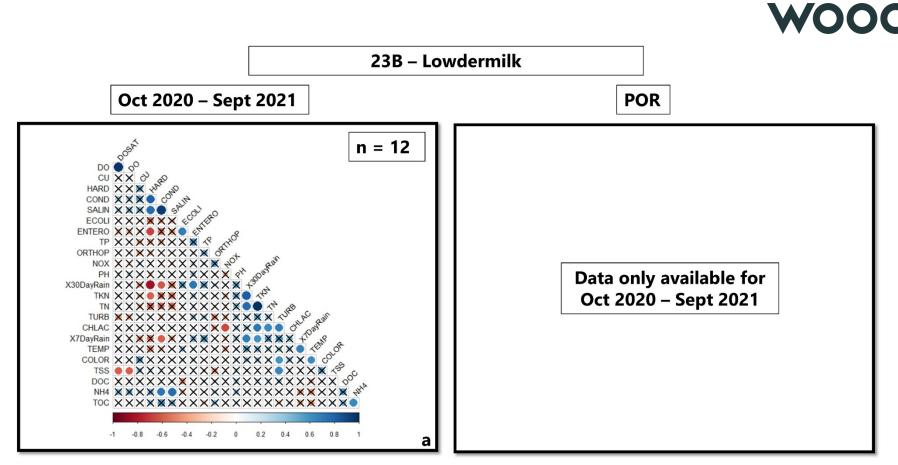
Note:


CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C18 Appendix C – Water Quality Correlations for Naples Stormwater Stations

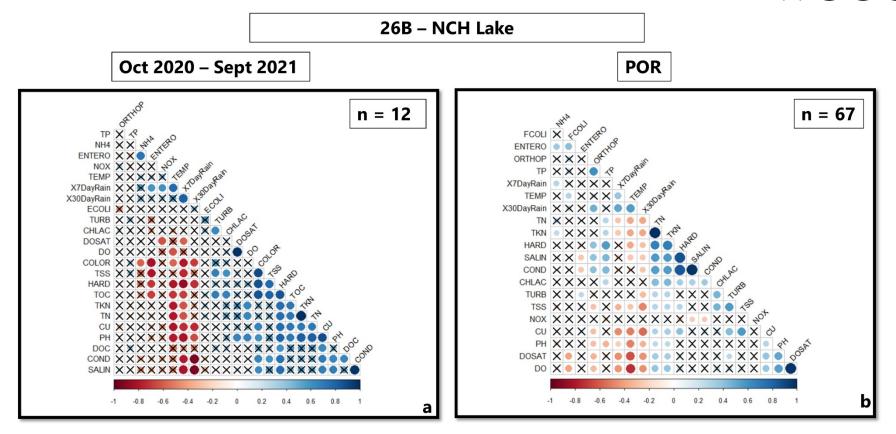
CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation



Note:

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation


C20 Appendix C – Water Quality Correlations for Naples Stormwater Stations

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation

X=correlation is not significant, red=negative correlation, blue=positive correlation

C21 Appendix C – Water Quality Correlations for Naples Stormwater Stations

Note:

CHLAC – Corrected Chlorophyll-a | COND – Specific Conductance | CU – Copper | DOC – Dissolved Organic Carbon DO – Dissolved Oxygen | ECOLI – E. coli | ENTERO – Enterococci | FCOLI = Fecal Coliform | HARD – Hardness | NOX – Nitrate+Nitrite | ORTHOP – Orthophosphate | PH – pH |SALIN – Salinity | TEMP – Temperature | TURB – Turbidity | TKN – Total Kjeldahl Nitrogen | TN – Total Nitrogen | TP – Total Phosphorus | TSS – Total Suspended Solids | X7DayRain – 7-Day rolling antecedent precipitation | X30DayRain – 30-Day rolling antecedent precipitation