CITY OF NAPLES PURCHASING DIVISION CITY HALL, 735 8TH STREET SOUTH NAPLES, FLORIDA 34102 PH: 239-213-7100 FX: 239-213-7105

ADDENDUM NUMBER 2

NOTIFICATION DATE:	SOLICITATION TITLE:	SOLICITATION NUMBER:	BID OPENING DATE & TIME:
03/25/2024	Lake Restoration & Improvements Project (Lakes 8 & 9) - RFP	24-014	04/09/2024 2:00PM

THE FOLLOWING INFORMATION IS HEREBY INCORPORATED INTO, AND MADE AN OFFICIAL PART OF THE ABOVE REFERENCED BID.

The following answers to written, submitted questions:

1. Please see Attachment A – Feasibility Study and its appendices

###

IMPORTANT MESSAGE

PLEASE ACKNOWLEDGE RECEIPT OF THIS ADDENDUM ON THE BID COVER SHEET.

CITY OF NAPLES

NORTH LAKE AND SOUTH LAKE FEASIBILITY STUDY FINAL REPORT

CITY OF NAPLES STREETS AND STORMWATER DEPARTMENT 295 RIVERSIDE CIRCLE NAPLES, FL 34102

PROJECT NO.: 600843 DATE: FEBRUARY 01, 2023

WSP USA 5051 S FLORIDA AVENUE SUITE 301 LAKELAND, FL 33812

T: +1 863-667-2345

WSP.COM

1	INTRODUCTION1
2	BACKGROUND
2.1	Hurricane Ian3
2.2	Existing Data Review Summary4
3	ECOLOGICAL EVALUATION10
3.1	Wetlands and Surface Waters12
3.2	Threatened and Endangered Species Survey14
4	SEDIMENT EVALUATION25
4.1	Sediment Engineering Evaluation25
4.2	Sediment Flux34
5	WATER QUALITY IMPROVEMENT TECHNOLOGIES
5 5.1	
	TECHNOLOGIES
5.1	TECHNOLOGIES
5.1 5.2	TECHNOLOGIES
5.1 5.2 5.3	TECHNOLOGIES35Dredging35Bio-augmented Aeration37Floating Islands38
5.1 5.2 5.3 5.4	TECHNOLOGIES35Dredging35Bio-augmented Aeration37Floating Islands38Littoral Shelf Modifications and Plantings39
5.1 5.2 5.3 5.4 5.5	TECHNOLOGIES35Dredging35Bio-augmented Aeration37Floating Islands38Littoral Shelf Modifications and Plantings39Exfiltration Trenches40Nutrient Separating Baffle Boxes and Curb Inlet
5.1 5.2 5.3 5.4 5.5 5.6	TECHNOLOGIES35Dredging35Bio-augmented Aeration37Floating Islands38Littoral Shelf Modifications and Plantings39Exfiltration Trenches40Nutrient Separating Baffle Boxes and Curb Inlet Baskets41

6	ALTERNATIVES ANALYSIS	.45
7	FUNDING EVALUATION	.51
8	SUMMARY AND NEXT STEPS	. 53
BIBLI	OGRAPHY	. 54

TABLES

FIGURES

FIGURE 1. NORTH LAKE AND SOUTH LAKE LOCATIONS2
FIGURE 2. TOTAL NITROGEN CONCENTRATIONS IN NORTH LAKE, SOUTH LAKE, AND
ALLIGATOR LAKE.
FIGURE 3. TOTAL PHOSPHORUS
CONCENTRATIONS IN NORTH
LAKE, SOUTH LAKE, AND
ALLIGATOR LAKE
FIGURE 4. NORTH LAKE AND SOUTH LAKE
SURROUNDING LAND USE MAP19
FIGURE 5. NRCS SOILS MAP FOR NORTH LAKE
AND SOUTH LAKE
FIGURE 6. NWI WETLAND MAP FOR NORTH LAKE
AND SOUTH LAKE21
FIGURE 7. VEGETATION BOUNDARY LINE FOR
NORTH LAKE22

FIGURE 8. VEGETATION BOUNDARY LINE FOR
SOUTH LAKE23
FIGURE 9. WILDLIFE MAP FOR NORTH LAKE AND
SOUTH LAKE24
FIGURE 10. SEDIMENT SAMPLING AND
COMPOSITE LOCATIONS
FIGURE 11. SOFT SEDIMENT THICKNESS IN NORTH
LAKE32
FIGURE 12. SOFT SEDIMENT THICKNESS IN SOUTH
LAKE33

APPENDICES

APPENDIX A	ECOLOGICAL EVALUATION
DOCUMENTATIO	N
APPENDIX B	SEDIMENT CORING LABORATORY REPORTS
APPENDIX C	SEDIMENT FLUX STUDY DOCUMENTATION

1 INTRODUCTION

Properly functioning stormwater lakes are important for effective management of both stormwater quality and stormwater quantity. The functioning and treatment capacity of some stormwater lakes within the City of Naples (the City) has been diminished over time as a result of sediment and pollutant loadings. The City has been conducting lake restorations at stormwater lakes throughout Naples and has recently prioritized North Lake (Lake 8) and South Lake (Lake 9) for restoration (**Figure 1**). The functions of North Lake and South Lake are to store and direct stormwater into the Gulf of Mexico to mitigate flooding and reduce peak flows during rainfall events. As such, these lakes provide valuable services to the citizens of the City of Naples, particularly the residents adjacent to North and South Lakes. Citizens desire an aesthetically pleasing lake front, without nuisance algal blooms or other objectionable conditions that may result from temporary water quality variations that are inherent to the dynamic nature of stormwater lakes.

The City implemented a Stormwater Lakes Management Plan in 2012 and identified South Lake, Lois Selfon Lake, Alligator Lake (which is downstream of North Lake and South Lake), Swan Lake, and Half Moon Lake as some of the lakes with the lowest pollutant removal efficiencies. Since 2012, the City has completed or initiated lake improvement projects to improve water quality at several of these lakes, including restoration in Spring Lake (upstream of Lois Selfon Lake) and Swan Lake. In the 2019 update to the City's Stormwater Lakes Management Plan, WSP (formally Wood Environment & Infrastructure, Inc.), identified North Lake as another high priority lake for restoration.

To support the City in its aim to restore stormwater lakes within Naples, WSP is currently developing lake restoration plans and specifications for North Lake and South Lake. WSP has conducted ecological evaluations of each lake, performed sediment depth surveys, collected sediment samples for analysis, and conducted flux analysis on lake sediment samples. This report describes the results of these surveys, potential water quality improvement technologies that may be considered for lake restorations and includes information on the current modeling effort and next steps. The report also includes context for an alternatives analysis and potential project funding opportunities.

The final feasibility analysis will include assessment of whether dredging or other means of remediation are viable such as capping, augmented aeration, or other applicable technology(s). WSP will provide a matrix analysis discussing the pollutant removal efficiencies, construction impacts, conceptual cost estimates, and other applicable factors. An Interconnected Channel and Pond Routing (ICPR) model is currently being used to simulate water-surface elevations in the North and South Lakes. The hydrologic portion of the model simulates rainfall runoff hydrographs from a variety of storm events from delineated sub-basins for each lake, while the hydraulic component routes storm hydrographs through natural and constructed stormwater features to determine flood stages and peak flows resulting from specific storm events. Two scenarios will be modelled, existing conditions and proposed conditions. The proposed conditions model will make changes to culvert sizes and stage/storage areas in each lake if additional stormwater flow capacity or stormwater retention volume is needed to accomplish project goals. Estimates of the anticipated water quality benefits will be modeled with the BMP Trains model (Version 4.3.5) developed by the University of Central Florida Stormwater Academy (Wanielista, 2020).

Figure 1. North Lake and South Lake locations.

2 BACKGROUND

North Lake is approximately 1.76 acres and South Lake is approximately 4.35 acres in size. The Combined City Clerk Report from 2010 on the ownership of City stormwater lakes describes the lake parcel ownership as "not specified on plat", and "reserved for lake purposes". While ownership is unknown, each property owner's property line extends into the lakes. North Lake discharges into South Lake, which then discharges into Alligator Lake (Lake 10), which then discharges into the Gulf of Mexico via beach outfall 6.

The City has an easement around North Lake and maintains the vegetation on the north side, along 7th Avenue N, where there are no residential properties. The City also maintains two aerators in the lake associated with a previous project. This project utilized floating islands to improve water quality, but the islands were removed because of resident complaints. North Lake is surrounded by 11 residential properties. South Lake also has an easement around the lake which is maintained for drainage purposes. There are two private aerators that the City does not maintain or own. South Lake is surrounded by 25 residential properties with no access to the lake apart from a few narrow easements located at the inflow and outflow pipes.

North Lake receives some stormwater public drainage as well as runoff from the surrounding lakeshed, which consists of residences, commercial properties, and roadways. There are two inflow pipes to North Lake and one outflow pipe that discharges to South Lake. In addition to the outflow from North Lake, South Lake receives stormwater from the surrounding lakeshed, which consists of residences and roadways. There are three inflow pipes to South Lake and one outflow pipe that discharges to Alligator Lake.

The City of Naples was hit by Hurricane Ian in September 2022. In addition to the typical climatic variation that can result in fluctuations in stormwater lake water quality, hurricanes represent a larger impact on system variability as a result of more intense rainfall, longer inundation periods, storm surge, and urban flooding. Because Hurricane Ian hit during the data collection phase of this project, additional data is provided below on the hurricane's impact on the City of Naples and potential effects of hurricanes on nearshore areas. A brief literature review, to provide additional background on the conditions within North Lake and South Lake, is also included.

2.1 HURRICANE IAN

Hurricane Ian made landfall near Cayo Costa, a barrier island west of Fort Myers and north of Naples, on September 28, 2022, as a Category 4 Atlantic Hurricane with maximum sustained winds of 150 mph. Prior to making landfall, Hurricane Ian had maximum sustained winds of 155 mph (just short of the Category 5 classification)¹. This storm brought record-breaking storm surge and flooding to the region. Hurricane Ian has been described as producing 1-in-1,000-year rainfall with rain accumulation well over 12 inches in a 12-to-24-hour period from Port Charlotte to Orlando according to radar estimates².

Hurricane Ian caused water levels to rise 6.18 feet before the tidal gauge off the coast of Naples became inoperable in the afternoon of September 28³. Peak tide information is still being assessed, but the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information estimates that some coastal communities may have experienced storm surge as great as 12 feet⁴. Total rainfall between September 27 and 30,

https://www.nesdis.noaa.gov/news/hurricane-ians-path-of-destruction (accessed 12/8/2022)

¹NOAA National Environmental Satellite Data and Information Service, "Hurricane Ian's Path of Destruction", available at

² Fritz, Angela and Miller, B. CNN. "Hurricane Ian's rainfall was a 1-in-1,000 year event for the hardest-hit parts of Florida", available at https://www.cnn.com/2022/09/29/weather/hurricane-ian-1000-year-rainfall-climate/index.html (accessed 12/8/2022)

³ Iowa State University Environmental Mesonet, "National Weather Service Raw Text Product", available at

https://mesonet.agron.iastate.edu/wx/afos/p.php?pil=PSHMFL&e=202210141556 (accessed 12/8/2022)

⁴ NOAA National Centers for Environmental Information, Monthly National Climate Report for September 2022, published online October 2022, retrieved on December 8, 2022 from <u>https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202209/supplemental/page-5</u>.

2022 was estimated to be a maximum of 10 inches in Naples⁴. East Naples received 6.99 inches between September 26 and 29³.

Storm surge and flooding from hurricanes can potentially cause additional sedimentation within stormwater lakes. Storm surge can cause discrete deposits in coastal lakes, enclosed lagoons, and sinkholes. Hurricanes recorded in coastal lake sedimentation are typically observed in the sediment record as coarse-grain deposits, 0.1 to 1 cm thick, with lower amounts of organic matter interstratified in organic sediment⁵. After Hurricane Harvey landed in the Houston-Galveston region in 2017, researchers analyzed its impact on the Galveston Bay Estuarine System through the changes in its sediment. The researchers saw a significant change in the estuary's bed sediment compared to its historical data. Through quantifying the sediment's physical, chemical, and biological characteristics, they showed that natural events, such as Hurricane Harvey, can affect metal concentrations and microbial communities within the estuary⁶. In addition to sediment potentially being deposited into the lakes due to the hurricane, saltwater intrusion may have also occurred as seen in the San Bernard National Wildlife Refuge, Texas, after Hurricane Harvey⁷.

2.2 EXISTING DATA REVIEW SUMMARY

WSP reviewed the following reports for data and information related to North and South Lakes and the surrounding watershed:

- City of Naples 2020-2021 Annual Surface Water and Pump Station Monitoring and Analysis Report (Wood, 2022)
- City of Naples 2019 Update to the City of Naples Stormwater Lakes Management Plan (Wood, 2019)
- City of Naples 2018 Stormwater Master Plan Update (AECOM, 2018)
- City of Naples Stormwater Quality Analysis, Pollutant Loading, and Removal Efficiencies (AMEC, 2012)

Each report was reviewed with a focus on water quality data (e.g., total suspended solids [TSS], nutrients including total phosphorus [TP] and total nitrogen [TN], and bacteria).

2.2.1 CITY OF NAPLES 2020-2021 ANNUAL SURFACE WATER MONITORING REPORT (WOOD, 2022)

Between October 2020 and September 2021, Wood conducted water quality sampling at 22 stormwater lakes and three pump stations within the City of Naples. Samples were analyzed for nutrients, chlorophyll-a (chl-a), copper (Cu), and fecal indicator bacteria. Frequent water quality monitoring is important to assess changes in water quality conditions in the lakes.

Wood (2022) found that some of the highest average concentrations of nutrients, chl-a, and fecal indicator bacteria were found in sampling locations in Half Moon Lake, North Lake, South Lake, Lantern Lake, and the Port Royal Pumping station. Statistically significant increasing trends were found for fecal coliform in both North and South Lakes.

While the stormwater lakes are not subject to the Florida Department of Environmental Protection (FDEP) regulatory water quality criteria, it can be helpful to consider in-lake water quality compared to the regulatory criteria of downstream water bodies. Water quality samples from North and South Lakes frequently contain concentrations of chl-a, TN, and TP that exceeds the criteria for the Gulf of Mexico. However, as stated in Wood (2022), "Stormwater

 ⁵ Sabatier, P, et. al. A Review of Event Deposits in Lake Sediments. *Quarternary* 2022, 5, 34. <u>https://doi.org/10.3390/quat5030034</u>
 ⁶ Kiaghadi, A., et. al. Longitudinal Patterns in Sediment Type and Quality During Daily Flow Regimes and Following Natural Hazards in an Urban Estuary. University of Houston. 2022.

https://d197for5662m48.cloudfront.net/documents/publicationstatus/49854/preprint_pdf/9bed10b52e00c71dc19a7be125b50848.pdf

⁷Yao, Q, et. al. Hurricane Harvey Storm Sedimentation in the San Bernard National Wildlife Refuge, Texas: Fluvial Versus Storm Surge Deposition. *Estuaries and Coasts* 2020, 43. <u>https://doi.org/10.1007/s12237-019-00639-6</u>

lakes are designed to receive rainfall runoff containing nutrients and other pollutants and exceedances are expected when comparing the stormwater lakes to downstream criteria which apply to more natural waterbodies that were not designed and constructed to intercept stormwater runoff from developed lands. The comparison to downstream water quality criteria is simply a comparison tool and the downstream water quality criteria do not represent target water quality conditions in stormwater lakes. Information on stormwater lake samples with exceedances of non-applicable downstream waterbody criteria is provided to assist managers on where to conduct additional study to support water quality improvement projects."

2.2.2 CITY OF NAPLES UPDATE TO THE STORMWATER LAKES MANAGEMENT PLAN (WOOD, 2019)

The 2019 Lakes Management Plan Update (LMPU) for the City of Naples summarized the water quality and sediment data for the City's stormwater lakes, the prior management plan, and included updated lake rankings and recommendations. Based on the 2019 LMPU priority rankings, North Lake was ranked as one of the lakes that should be a high priority for restoration. In a citizen survey conducted as part of the 2019 LMPU, North Lake stakeholders reported deteriorating water quality and flooding issues.

2.2.3 CITY OF NAPLES 2018 STORMWATER MASTER PLAN UPDATE (AECOM, 2018)

The 2018 update to the City of Naples Stormwater Master Plan evaluated flooding and water quality issues, described water quality and water quantity issues, and proposed stormwater improvement projects and funding opportunities for the City. North Lake and South Lake are in Basin 2, which is comprised primarily of urban land (AECOM 2018) and drains to the Gulf of Mexico. Proposed projects were not included for North Lake and South Lake. AECOM (2018) also noted that Gulf Shore Boulevard, a road within Basin 2 that experiences flooding, was to be reviewed as part of an Ocean Outfall Study.

A public survey included in this study found that the public was "...interested in improving/restoring Naples Bay and Gulf of Mexico/Naples Beaches over other water bodies," indicating potential support for restoration of North and South Lake which discharge to the Gulf of Mexico.

2.2.4 CURRENT WATER QUALITY MONITORING PROGRAM

WSP is currently collecting water quality samples monthly from the City of Naples stormwater lakes, including North Lake and South Lake. Concentrations of TN and TP since 2020 are shown in **Preliminary data** analysis incorporating data from the current water quality program (through September 2022) and previously collected data back to 2014 (as summarized in Wood, 2022) indicate increasing concentrations of ammonia-nitrogen (an inorganic component of TN) in North Lake and increasing *Enterococci* and fecal coliform in South Lake. In the downstream lake (Alligator Lake), concentrations of orthophosphate (dissolved inorganic component of TP) and *Enterococci* were significantly increasing. Statistically significant trends in nutrients were not observed in North or South Lake; TN and chl-a were decreasing in Alligator Lake. However, while trends may be statistically significant, they may not be ecologically significant. A trend slope near zero likely will not show a measurable effect within a reasonable time frame (i.e., years to decades). Therefore, decreasing trends do not necessarily indicate that additional water quality improvement projects would not be beneficial.

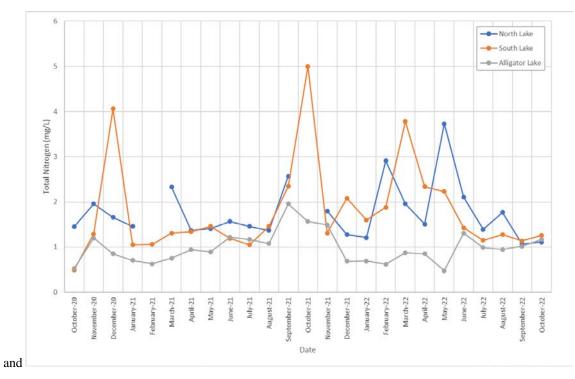
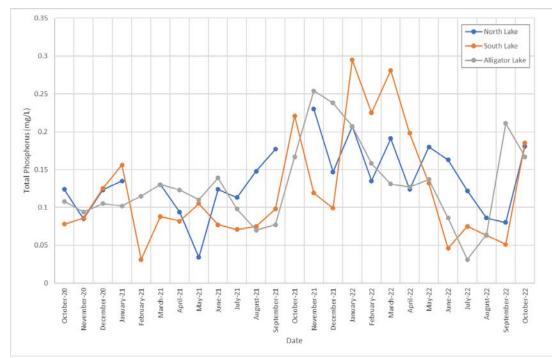



Figure 2. Total nitrogen concentrations in North Lake, South Lake, and Alligator Lake. Not displayed on the figure is the North Lake concentration from February 2021 which exceeded 40 mg/L and October 2021 of 8.5 mg/L. Nondetects displayed as the detection limit (0.05 mg/L), if applicable.

Figure 3. Preliminary data analysis incorporating data from the current water quality program (through September 2022) and previously collected data back to 2014 (as summarized in Wood, 2022) indicate increasing concentrations of ammonia-nitrogen (an inorganic component of TN) in North Lake and increasing *Enterococci* and fecal coliform

in South Lake. In the downstream lake (Alligator Lake), concentrations of orthophosphate (dissolved inorganic component of TP) and *Enterococci* were significantly increasing. Statistically significant trends in nutrients were not observed in North or South Lake; TN and chl-a were decreasing in Alligator Lake. However, while trends may be statistically significant, they may not be ecologically significant. A trend slope near zero likely will not show a measurable effect within a reasonable time frame (i.e., years to decades). Therefore, decreasing trends do not necessarily indicate that additional water quality improvement projects would not be beneficial.

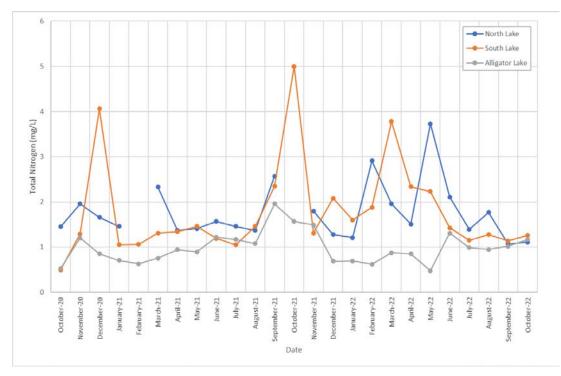


Figure 2. Total nitrogen concentrations in North Lake, South Lake, and Alligator Lake. Not displayed on the figure is the North Lake concentration from February 2021 which exceeded 40 mg/L and October 2021 of 8.5 mg/L. Nondetects displayed as the detection limit (0.05 mg/L), if applicable.

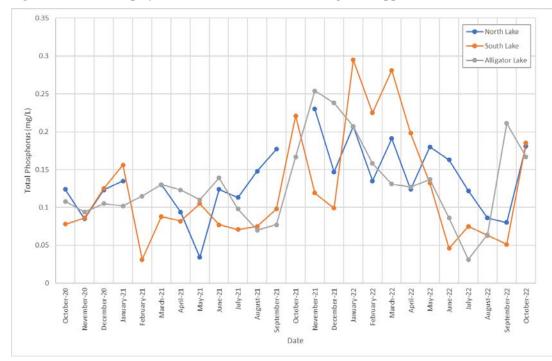


Figure 3. Total phosphorus concentrations in North Lake, South Lake, and Alligator Lake. Not displayed on the figure is the North Lake concentration from February 2021 of 3 mg/L and October 2021 of 1.7 mg/L. Nondetects displayed as the detection limit (0.008 mg/L), if applicable.

2.2.5 CONCLUSION OF DATA REVIEW

After assessing available data from North and South Lake, WSP expects that the current water quality dataset is sufficient for the North Lake and South Lake Feasibility Study. The sediment assessment conducted as part of the current project and described below, also provides valuable data, considering sediment samples have not been recently collected from North Lake and South Lake.

WSP also conducted ICPR modeling. Spatial data (in ArcGIS) on the stormwater infrastructure was provided by the City of Naples. The infrastructure dataset included the existing stormwater infrastructure (culverts, weirs, drop structures, surface ditches) relevant to the North Lake and South Lake watersheds. Review of these data were incorporated into the ICPR modeling task.

3 ECOLOGICAL EVALUATION

WSP conducted an ecological evaluation in September 2022, prior to Hurricane Ian. The lakes are artificial impoundments/reservoirs surrounded by medium density residential dwelling units according to the Florida Land Use and Cover Classification System (FLUCCS) (**Figure 4**). The Natural Resources Conservation Service (NRCS) soils map characterizes the area as surrounded by urban land at 0 to 2 percent slopes (

Figure 5). The National Wetlands Inventory (NWI) does not identify any wetlands, only surface waters, in or surrounding the project areas (

Figure 6)

3.1 WETLANDS AND SURFACE WATERS

WSP reviewed available topographic survey information, soil maps, land use maps, and NWI maps to prepare for the wetland delineation. The wetland delineation and field reconnaissance were completed September 1, 2022, by WSP scientists. The sites were delineated for wetlands using methods as described in the Delineation of the Landward Extent of Wetlands and Surface Waters [FDEP, Chapter 62.340, F.A.C]. This procedure uses a series of tests to address three characteristics of wetlands, including the presence/absence of hydrophytic vegetation, wetland hydrology, and hydric soils.

WSP conducted the field visit to characterize the delineated wetlands and surface waters. Delineation included onsite determination, marking in the field with a handheld GPS unit (sub-meter accuracy), and flagging of the aerial extent of each wetland (if any). Potential wetlands were identified along the littoral edge of the surface waters. A Uniform Mitigation Assessment Method (UMAM) was completed based on the current conditions of each lake (**Appendix A-1**).

The perimeter of each lake was assessed via kayak. No flows were observed out of the culverts at either site during the site visit. Emergent vegetation and species composition was notated. The vegetation across both sites was comprised primarily of non-native species, with some native species in concentrated areas. Prevalent species throughout both sites include alligator weed (*Alternanthera philoxeroides*) and Peruvian primrose-willow (*Ludwigia peruviana*).

North Lake was dominated by alligator weed and Peruvian primrose-willow with less than 5% desirable cover around the lake's perimeter (

Figure 7). About two-thirds of the lake was covered by duckweed (*Lemna* sp.) during the site visit. Queen palm (*Syagrus romanzoffiana*), coconut palm (*Cocos nucifera*), and Bismarck Palm (*Bismarckia nobilis*) were identified around the perimeter of North Lake as well.

South Lake was characterized primarily by alligator weed scattered around the lake's perimeter at varying distances of 3 to 6 feet from shore (

Figure 8). Most residential yards surrounding South Lake include sod maintained to the lake's edge and had little to no emergent vegetation, with most having a slope of 60 degrees or greater at the lakes edge. The color in South Lake was a blue tint likely due to an additive. Four bubblers were active and a film on the water surface was observed at the time of the site visit. Florida royal palm (*Roystonea regia*), queen palm, coconut palm, and Sabal palm (*Sabal palmetto*) were identified around the perimeter of South Lake.

A list of all observed plant species at both sites is included in **Table 31**. Site photographs are included in **Appendix A-2**.

3.2 THREATENED AND ENDANGERED SPECIES SURVEY

The threatened and endangered (T&E) species survey was conducted in two phases consistent with the Environmental Resource Permit (ERP) application for the proposed action. The first phase was a literature search and mapping effort to identify species potentially found on the site. Available data was gathered through an online data search of the Florida Fish and Wildlife Conservation Commission (FWC), United States Fish and Wildlife Service (USFWS), Florida Natural Areas Inventory (FNAI), Florida Geographic Data Library (FGDL), and other sources. Maps of previous sightings and critical habitat of listed species were compiled. Distances from the project site to adjacent features were calculated and compared to regulatory constraints. A wildlife map was produced in GIS format and is presented in

Figure 9. Potential listed species occurrences are presented in Appendix A-3.

During the site visit, WSP scientists conducted a kayak-based visual survey. Records were made of any wildlife observed, listed plant species found, any evidence of wildlife utilization, and appropriate habitat for listed species.

The American wood stork core foraging area overlaps with the northeast corner of the lake (

Figure 9). No wood storks were observed within the proximity of either lake project area during the site investigation. This report can be submitted to the regulatory agencies as an exhibit noting that listed species are possibly present by not likely to be adversely affected by the proposed development. Non-listed fauna encountered at the two sites are summarized in **Table 2**. While not a complete listing of every species found, it is representative of the sites.

A listing of threatened and endangered species for Collier County, Florida, was obtained from the USFWS Information for Planning and Consultation (IPaC) website (http://ecos.fws.gov/ipac). According to the report, there are 19 species (four mammals, five birds, five reptiles/amphibians, one fish, three insects, and one flowering plant) that are known to occur or have the potential to occur within the vicinity of the project areas. There are no critical habitats listed within the project areas. A copy of the Trust Resources List is included in Appendix A3.

Additionally, WSP generated a Biodiversity Matrix from the FNAI website (http://www.fnai.org/biointro.cfm) to determine if State-listed species may be affected by the proposed project. According to the report, there are 29 species that are known to occur, or have the potential to occur within the vicinity of the project areas. This report does contain some overlap with the Federal listings from IPaC. A copy of the Biodiversity Matrix Query Results is included in Appendix A3.

Notable species listed in the FNAI Biodiversity Matrix and IPaC Trust Resources list potentially impacted at the project site are described below:

— American Alligator: The American alligator (*Alligator mississippiensis*) is federally protected by the Endangered Species Act (ESA) as a threatened species and as a state threatened species by Florida's Endangered and Threatened Species Rule. This is due to their similarity of appearance to the American crocodile (*Crocodylus acutus*), which is a federally endangered species. Alligator habitat includes permanent bodies of water such as lakes, rivers, and swamps. No alligator were observed during the kayak survey. The proposed dredging of North and South Lakes are not expected to have a permanent habitat impact. Additionally, due to the transient nature of this species, it would be expected that any alligators currently using the immediate project area would relocate to the ample available habitat of the surrounding area without disruption of their normal behavior.

Wood stork: While a small section of North Lake is within a core foraging area, no wood storks (*Mycteria americana*) were observed on site (

Figure 9). This species is listed as threatened under the ESA Wood storks prefer continuously inundated wetland areas, limited to depths less than 10-12 inches. Based on these findings, we conclude that there is appropriate habitat for this species within the project area, however, the project as designed is not likely to impact this species or its habitat.

Other listed species noted in the FNAI Biodiversity Matrix and IPaC Trust Resources list were not considered to be present or potentially impacted at the project site. Transient species have the potential to be present on-site at any time. Any potential impacts on these species will be temporary and minimal.

Species	Common Name	Native or Non- native	FDEP Status			
	North Lake					
Albizia julibrissin	Silktree; Mimosa	Non-native	FISC Category 1			
Alternanthera philoxeroides	Alligator weed	Non-native	FISC Category 2			
Annona glabra	Pond apple	Native	OBL			
Azolla sp.	Mosquitofern					
Boehmeria cylindrica	False nettle; Bog hemp	Native	OBL			
<i>Canna</i> sp.						
Coccoloba uvifera	Seagrape	Native				
Cupaniopsis anacardiodes	Carrotwood tree	Non-native				
Hydrocotyle umbellata	Manyflower Marshpennywort	Native	FACW			
<i>Lemna</i> sp.	Duckweed	Native				
Ludwigia peruviana	Peruvian primrose-willow	Non-native	FISC Category 1 OBL			
Najas guadalupensis	Southern waternymph	Native				
Pontederia cordata	Pickerelweed	Native	OBL			
Schinus tereninthifolia	Brazilian peppertree	Non-native	FISC Category 1			
<i>Typha</i> sp.	Cattail	Native	OBL			
	South Lake	1				
Alternanthera philoxeroides	Alligator weed	Non-native	FISC Category 2			
Crinum americanum	Seven-sisters; String-lily	Native	OBL			
Cyperus papyrus	Papyrus flatsedge	Non-native	OBL			
Ludwigia peruviana	Peruvian primrose-willow	Non-native	FISC Category 1 OBL			
Panicum repens	Torpedograss	Non-native	FISC Category 1 FACW			
Pontederia cordata	Pickerelweed	Native	OBL			
Schinus tereninthifolia	Brazilian peppertree	Non-native	FISC Category 1			

Table 31. Plant species observed at North Lake and South Lake.

Species	Common Name	Comments
	North Lake	
Cairina moschata	Muscovy duck	
Centropomus undecimalis	Snook	
Egretta thula	Snowy egret	
Gallinula chloropus	Moorhen	
Gambusia holbrooki	Mosquitofish	
	South Lake	
Gallinula chloropus	Moorhen	
Butorides virescens	Little green heron	
Gambusia holbrooki	Mosquitofish	
Cyanocitta cristata	Blue jay	
Corvus sp.	Crow	
Ardea alba	Great egret	
Eudocimus albus	White Ibis	
Cairina moschata	Muscovy duck	
Mimus polyglottos	Mockingbird	
Centropomus undecimalis	Snook	Did not observe; resident informed
Megalops atlanticus	Tarpon	Did not observe; resident informed
Centrarchidae (family)	Sunfish	Did not observe; resident informed

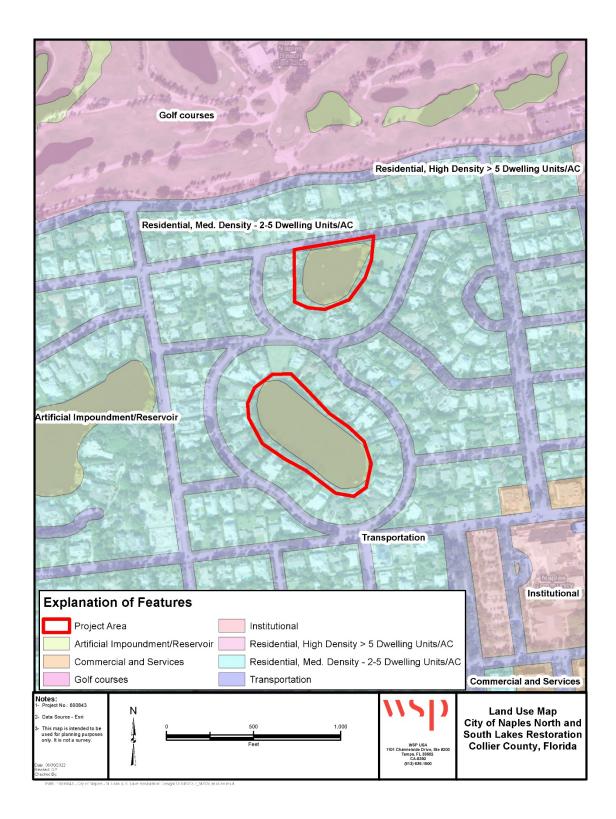


Figure 4. North Lake and South Lake surrounding land use map.

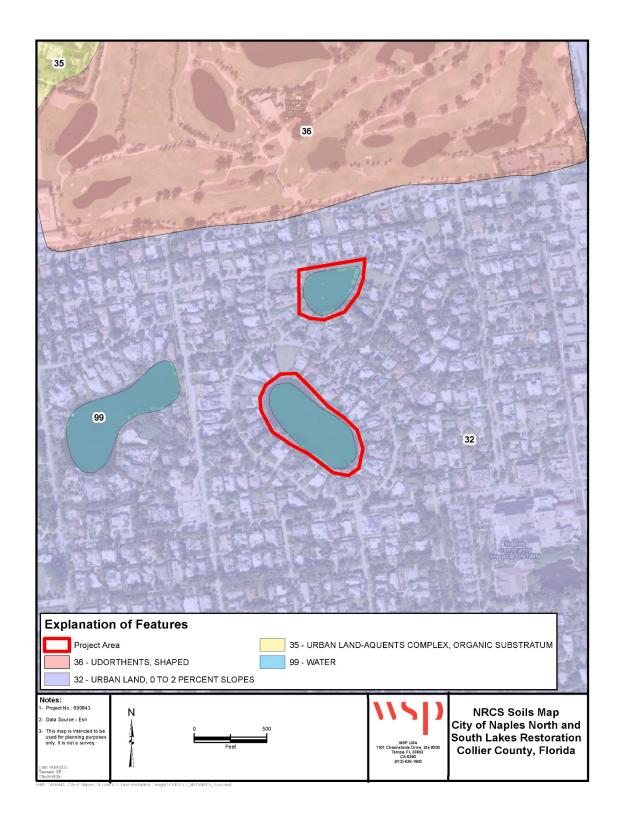


Figure 5. NRCS soils map for North Lake and South Lake.

Figure 6. NWI wetland map for North Lake and South Lake.

Figure 7. Vegetation boundary line for North Lake.

Figure 8. Vegetation boundary line for South Lake.

Figure 9. Wildlife map for North Lake and South Lake.

4 SEDIMENT EVALUATION

4.1 SEDIMENT ENGINEERING EVALUATION

WSP conducted engineering site visits with survey and coring to assess site conditions in North Lake and South Lake. Sediment cores were collected from each lake (Table 4. Select analytical data for composited sediment samples collected in November 2022 from North Lake and South Lake with comparison to groundwater criteria.

Lake	Composite Sample ID (Sample Locations used in Composite)	Total Arsenic (ug/L)	Cadmium (ug/L)	Total Chro- mium (ug/L)	Total Lead (ug/L)
North	LAKE 8 Comp #3 (1, 3, 7)	110	3.3 U	17.0 U	21.0 U
Lake	LAKE 8 Comp # 2 (2, 4, 8)	42 I	3.3 U	17.0 U	21.0 U
(Lake 8)	LAKE 8 Comp #1 (6, 5, 9)	34.0 U	3.3 U	17.0 U	21.0 U
	LAKE 9 Comp #1 (1, 3, 4)	34.0 U	3.3 U	17.0 U	21.0 U
	LAKE 9 Comp #5 (15, 16, 19, 22)	51 I	3.3 U	17.0 U	21.0 U
	LAKE 9 Comp # 6 (17, 18, 20, 21)	100	3.3 U	17.0 U	21.0 U
South	LAKE 9 Comp #2 (2, 5, 6)	98 I	3.3 U	17.0 U	21.0 U
Lake	LAKE 9 Comp #3 (7, 9, 10, 13)	34.0 U	3.3 U	17.0 U	21.0 U
(Lake 9)	LAKE 9 Comp #8 (11, 12, 14,)	42 I	3.3 U	17.0 U	21.0 U
	GCTLs	10	5	100	15
FDEP Criteria	NADCs	100	50	1000	150

Notes:

NA = Not Available

NS = Not Sampled

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

Exceeds GCTL Limit Exceeds NADC Limit

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U = Compound was analyzed but not detected.

Figure 10) on November 14 and 15, 2022. At each sample location, intact cores were collected to the depth of the consolidated sand layer. Cores were then composited (as indicated in **Figure 10**) and each composited core sample was submitted to an analytical laboratory for physical and chemical analysis. Physical testing of each core included moisture content (ASTM D2216), percent fines (D1140), and organic matter (D2974). Chemical characterization included nitrogen and phosphorus to characterize the benefits of removal; and metals, Total Recoverable Petroleum Hydrocarbons (TRPH), and polynuclear aromatic hydrocarbons (PAHs) that may affect disposal or beneficial re-use options. A survey was conducted to assess water depth and muck thickness via sediment probing. The survey work was conducted in September (12-15 and 21-22) and October (17-18) 2022.

Analysis of the sediment core data are underway and preliminary laboratory results have been received (**Appendix B**). These results indicate exceedances of the FDEP's Soil Cleanup Target Levels (SCTLs) for arsenic, copper, benzo (a) pyrene (BAP), and the total BAP equivalent in both lakes. Arsenic concentrations also exceeded groundwater FDEP criteria (e.g., Groundwater cleanup target levels [GCTL]). Chemical suites with exceedances are included in **Table 3** and **Table 4**. Nutrient concentrations are also included in **Table 3**. Additional data is included in **Appendix B**. Results from soft sediment thickness mapping in North Lake (

Figure 11) and South Lake (

Figure 12) indicate almost 3 feet of highly organic sediment in portions of North Lake and up to 2 feet of highly organic sediment in portions of South Lake. Note: South Lake sediment elevations were collected both before and after Hurricane Ian and analysis of the survey points did not reveal evidence of differences in data between the collection dates.

The survey and sediment data will be used in future deliverables to estimate the volume of highly organic sediments for potential removal, the texture of these materials, and how it affects dredged material management/dewatering; nutrient loading which indicates the benefits of sediment removal on receiving waters; and contaminants that may affect disposal and beneficial re-use options.

	Composite Sample ID (Sample Locations	Metals (mg/kg) PAHs																					
Lake	used in Composite)														Nutrients (mg/kg) and Physical (%)								
		Arsenic	Cadmium	Chromium	Lead	Barium	Copper	Mercury	Selenium	Silver	Benzo (a) pyrene	Benzo (a) anthra-cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chrysene	Dibenz (a,h) anthra-cene	Indeno (1,2,3-cd) pvrene	Benzo (a) pyrene equivalent	Total Nitrogen Soil	Total Kjeldahl	Nitrogen, NO2 plus NO3	Phosphorus, Total (as P)	Percent Moisture (%)
	LAKE 8 Comp #3 (1,	16.4	0.17	5 1	20.0	1.5	44.2	0.074	101	0.15	0.23 I	0.045	0.00 1	0.101	0.047.1	0.078	0.161	0.22	1020	1020	0.56 11	106	55.3
	3, 7) LAKE 8 Comp # 2 (2,	16.4	0.17	5.1	28.9	1.5	44.3	0.074	1.0 U	U 0.086	0.231	U 0.025	0.28 I	0.12 I	0.047 I	U 0.043	0.16 I 0.043	0.32	1930	1930	0.56 U	100	55.5
North	LAKE 8 Comp # 2 (2, 4, 8)	4.2	0.058 I	1.8	10.2	0.58 I	24.2	0.02	0.58 U	0.086 U	0.046 U	0.025 U	0.050 U	0.050 U	0.025 U	0.043 U	0.043 U	0.051	675	675	0.38 U	43.3 I	33.6
Lake (Lake	4, 8) LAKE 8 Comp #1 (6,	4. 2	0.0301	1.0	10.2	0.301	24.2	0.02	0.38 0	0.083	0.067	0	0.030 0	0.050 0	0.025 0	0.037	0.039	0.051	075	075	0.38 0	43.31	33.0
(Lake 8)	5, 9)	4.1	0.11	4.6	37.2	2.2	26.8	0.021	1.5	U.005	0.007 I	0.063 I	0.10 I	0.043 U	0.074 I	U.057	I	0.11	755	755	0.35 U	140	27.9
0)	LAKE 9 Comp #1 (1,				0712		2010	0.021	110	0.097	-	01000 1	0.101	0.015 0	0.07.11	0.075	-	0111	100	100	0.55 0	10	
	3, 4)	5.2	0.3	2.6	2.8	1.3	114	0.022	0.66 U	U	0.31 I	0.15 I	0.43	0.15 I	0.16 I	U	0.18 I	0.43	983	983	0.46 U	59.4	45.4
	LAKE 9 Comp #5									0.16		0.060											
	(15, 16, 19, 22)	15.6	0.086 I	4	4.2	1.9	51.8	0.034	1.1 U	U	0.11 U	U	0.16 I	0.12 U	0.060 U	0.10 U	0.10 U	0.13	2210	2210	1.5	69.5 I	59.4
	LAKE 9 Comp # 6									0.15	0.093	0.050				0.087	0.086						
	(17, 18, 20, 21)	14.5	0.28	6.6	5.2	1.5	345	0.043	1.0 U	U	U	U	0.10 U	0.10 U	0.050 U	U	U	0.1	1210	1210	0.69 U	76.6 I	63.6
	LAKE 9 Comp #2 (2,									0.13	0.090	0.048				0.084	0.083						
	5, 6)	10.6	0.26	4.5	4.3	2.1	245	0.042	0.90 U	U	U	U	0.097 U	0.097 U	0.048 U	U	U	0.099	2500	2500	0.56 U	146	55.3
South	LAKE 9 Comp #3 (7,	0 40 T	0.022.11	0.201	0.43	0 10 T	2	0 000 0 T	0.40.11	0.070	0.074	0.041 I	0 11 T	0.047.11	0.025 1	0.041	0.046 I	0.11	1.40	1.40	0.22.11	22.7.11	22.5
Lake (Lake	9, 10, 13) LAKE 9 Comp 8 11	0.49 I	0.032 U	0.30 I	l	0.19 I	3	0.0092 I	0.48 U	U 0.19	1	0.0411	0.11 I	0.047 U	0.035 I	U	1	0.11	148	148	0.32 U	33.7 U	23.5
(Lake 9)	12 14	9.2	0.37	6.1	8.1	1.9	172	0.068	1.3 U	U.19	0.15 U	U.081 U	0.16 U	0.16 U	0.081 U	0.14 U	0.14 U	0.16	769	769	0.81 U	83.6 U	68.9
	Leachability Based on		0107	011	0.1	10		0.000	1.5 0	0	0.15 0	0	0.10 0	0.10 0	0.001 0	0.110	0.110	0120	105	102	0.01 0	00.0 0	
	Groundwater Criteria																						
	(mg/kg)	*	7.5	38	*	1600	NA	2.1	5.2	17	8	0.8	2.4	24	77	0.7	6.6	**	NA	NA	NA	NA	NA
	Direct Exposure																						
	Residential (mg/kg)	2.1	82	210	400	120	150	3	440	410	0.1	#	#	#	#	#	#	0.1	NA	NA	NA	NA	NA
	Direct Exposure																Ι Τ						
FDEP	Commercial/Industrial	10	1500	470	1.400	100000	00000	1.5	11000	0.000													
Criteria	(mg/kg)	12	1700	470	1400	130000	89000	17	11000	8200	0.7	#	#	#	#	#	#	0.7	NA	NA	NA	NA	NA

Table 3. Select analytical data for composited sediment samples collected in November 2022 from North Lake and South Lake with comparison to soil criteria.

Notes:

NA = Not Available

NS = Not Sampled

* = Leachability value may be determined using TCLP.

= Direct Exposure value not applicable except as part of the Benzo(a)pyrene equivalent.

** = Leachability value not applicable

Exceeds Leachability Based on Groundwater Criteria Limits

Exceeds Direct Exposure Residential Limits

Exceeds Direct Exposure Commercial/Industrial Limits

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U = Compound was analyzed but not detected.

Lake	Composite Sample ID (Sample Locations used in Composite)	Total Arsenic (ug/L)	Cadmium (ug/L)	Total Chro- mium (ug/L)	Total Lead (ug/L)
North Lake	LAKE 8 Comp #3 (1, 3, 7)	110	3.3 U	17.0 U	21.0 U
	LAKE 8 Comp # 2 (2, 4, 8)	42 I	3.3 U	17.0 U	21.0 U
(Lake 8)	LAKE 8 Comp #1 (6, 5, 9)	34.0 U	3.3 U	17.0 U	21.0 U
	LAKE 9 Comp #1 (1, 3, 4)	34.0 U	3.3 U	17.0 U	21.0 U
	LAKE 9 Comp #5 (15, 16, 19, 22)	51 I	3.3 U	17.0 U	21.0 U
South Lake	LAKE 9 Comp # 6 (17, 18, 20, 21)	100	3.3 U	17.0 U	21.0 U
	LAKE 9 Comp #2 (2, 5, 6)	98 I	3.3 U	17.0 U	21.0 U
	LAKE 9 Comp #3 (7, 9, 10, 13)	34.0 U	3.3 U	17.0 U	21.0 U
(Lake 9)	LAKE 9 Comp #8 (11, 12, 14,)	42 I	3.3 U	17.0 U	21.0 U
	GCTLs	10	5	100	15
FDEP Criteria	NADCs	100	50	1000	150

Table 4. Select analytical data for composited sediment samples collected in November 2022 from North Lake and South Lake with comparison to groundwater criteria.

Notes:

NA = Not Available

NS = Not Sampled

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

Exceeds GCTL Limit

Exceeds NADC Limit

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U = Compound was analyzed but not detected.

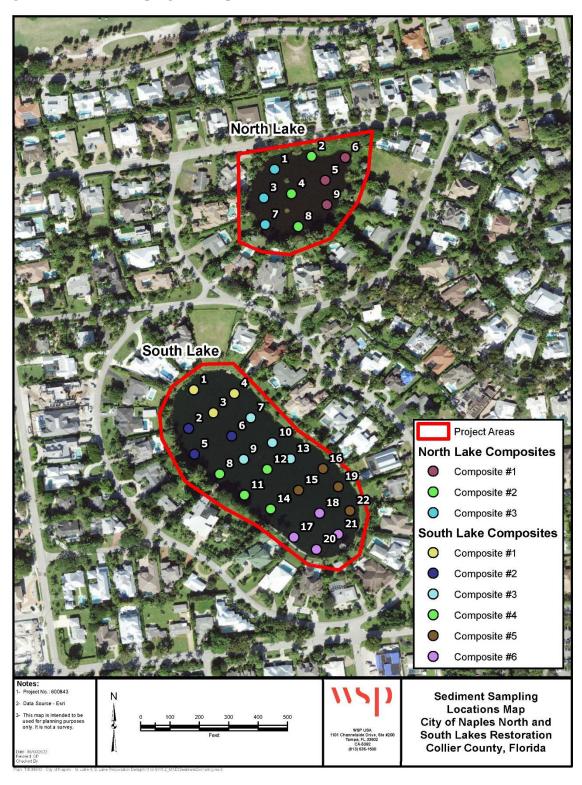


Figure 10. Sediment sampling and composite locations.

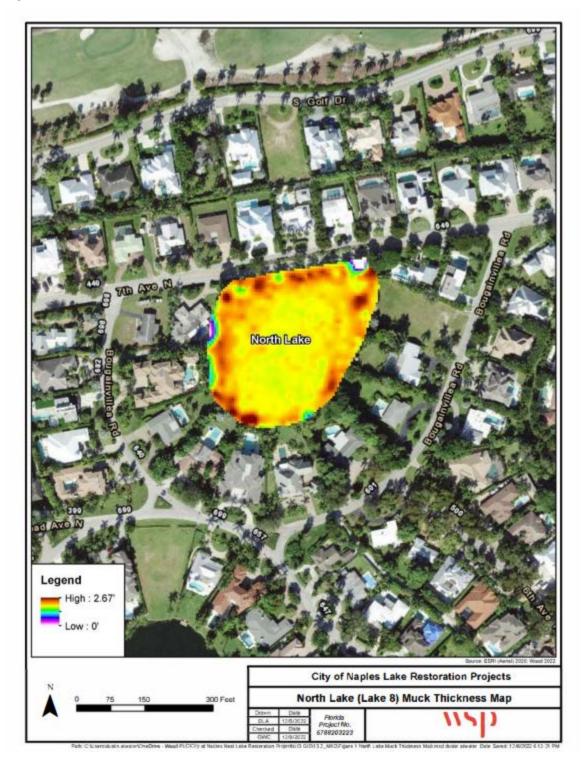


Figure 11. Soft sediment thickness in North Lake.

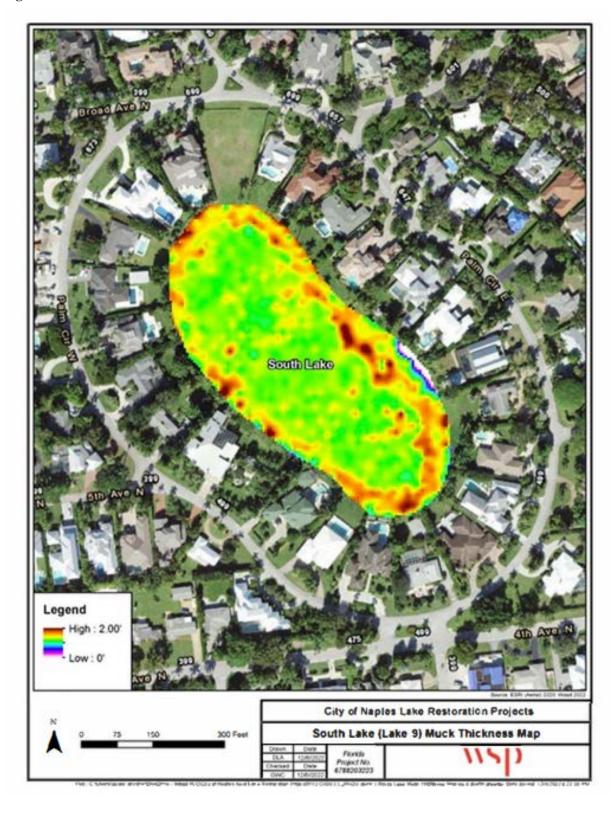


Figure 12. Soft sediment thickness in South Lake.

4.2 SEDIMENT FLUX

A pair of intact sediment cores were collected from North Lake and South Lake on September 12, 2022, in clear polycarbonate cylinders (7.3 cm diameter, 30 cm long). Sampling locations were chosen based on the amount of available sediment at locations close to inflow and outflow culverts. At the time of sampling, in-situ physicochemical data were recorded using a multiparameter sonde. Parameters included water temperature, dissolved oxygen (DO), pH, specific conductivity, salinity, and turbidity. Near-bottom ambient lake water was collected at the time of coring and filtered for use during sediment nutrient flux incubations. Sediment flux analyses were performed in the WSP USA Flux Laboratory in accordance with Standard Operating Procedure (SOP) Wood-SFLUX-002 Rev. 9. Sediment cores were prepared and incubated as two sets of two cores in a controlled environment under aerobic and anoxic conditions. The flux procedures are described briefly below, with additional details provided in **Appendix C**.

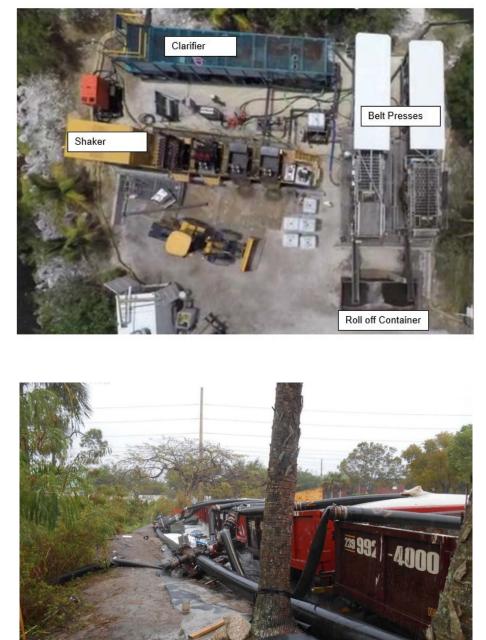
Water column samples for each core were collected at 0, 24, 48, 96, 168, and 216 hours and analyzed for TP, ammonia, and iron in a NELAC certified analytical laboratory. Sediment nutrient flux rates were estimated using the nutrient release rate (NRR) equation and the slopes were calculated from the concentration vs. time curve as described in the flux SOP. Annual internal nutrient loads were estimated at both stations and as spatial averages following the methods described by Ogdahl et al. (2014). Overall average loads were calculated from average flux rates representing the average anoxic and aerobic rates for both stations.

Average flux rates were calculated for aerobic and anoxic rates and the values were applied to the entire surface area of each pond to estimate representative values for internal loading rates. These flux rates may be further refined based on the results of the sediment engineering survey (e.g., flux rates may be applied to just those areas with highly organic sediments versus the entire lake). The internal loads calculated for the North Lake sediment core incubated under anoxic conditions were -8.84 lb/yr of TP, 57.66 lb/yr of ammonia, and 1.06 lb/yr of iron using the slope method. Using the NRR equation, internal loads were 0.00 lb/yr TP, 55.29 lb/yr ammonia, and 2.22 lb/yr iron. Under aerobic conditions, the North Lake sediment core displayed internal loads of 0.55 lb/yr TP, 45.03 lb/yr ammonia, and 1.56 lb/yr iron using the slope method. Using the NRR equation, the internal loads were 5.81 lb/yr TP, 56.24 lb/yr ammonia, and 2.98 lb/yr iron.

The internal loads calculated for the South Lake sediment core incubated under anoxic conditions were -22.60 lb/yr of TP, 159.39 lb/yr of ammonia, and 0.87 lb/yr of iron using the slope method. Using the NRR equation, internal loads were 1.65 lb/yr TP, 136.65 lb/yr ammonia, and 4.08 lb/yr iron. Under aerobic conditions, the South Lake sediment core displayed internal loads of -27.16 lb/yr TP, 16.03 lb/yr ammonia, and 1.90 lb/yr iron using the slope method. Using the NRR equation, the internal loads were 0.00 lb/yr TP, 21.20 lb/yr ammonia, and 1.96 lb/yr iron.

Sediment flux analysis showed similar TP, ammonia, and iron concentration values between North Lake and South Lake. Flux rates and loads calculated using the slope equation were on average lower and more conservative as compared to the values calculated by the NRR equation. However, both sets of equations suggest that each lake has the potential to act as a source of nitrogen while acting as a sink for phosphorus. Therefore, it is recommended that measures are taken to conduct targeted dredging and enhance ammonia uptake by biological processes.

5 WATER QUALITY IMPROVEMENT TECHNOLOGIES

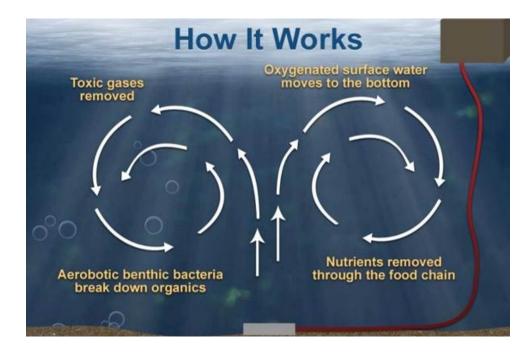

Best management practices (BMPs) that could improve water quality within North Lake and South Lake include dredging, bio-augmented aeration, floating islands, littoral shelf modifications, and littoral shelf plantings. There are also several in-line stormwater system improvements that can treat these contaminants upstream of entering the lake, including exfiltration trenches, curb inlet baskets, and rain gardens and/or vegetated swales at key locations within the basin. Potential water quality improvement technologies that may be beneficial to North and South lakes are described below. More targeted recommendations will be included in future deliverables.

5.1 DREDGING

There are two traditional methodologies for removal of muck sediments, mechanical and hydraulic dredging. Based on the above results for thickness and consistency, it is recommended to utilize a hydraulic dredging system as a mechanical dredging requires heavy equipment and would not be efficient in removing fine organic sediment. Mechanical dredging also requires a large footprint for dewatering since the material needs ample time to dry for hauling to a disposal area. Hydraulic dredging is a relatively low impact method of sediment removal with few effects on the surrounding environmental system. Hydraulic dredging includes a floating dredge, which essentially acts as a floating vacuum cleaner, and a temporary pipeline to transport the dredged material as a slurry to the dewatering site. The volume of the sediment slurry is greater than the in-situ volume of the sediment. The volume of dredge material can be better controlled with a hydraulic dredge than with mechanical dredging techniques. There are various types of hydraulic dredges available for sediment removal, such as the swing ladder, cutterhead, horizontal auger, plain suction, pneumatic, specialty dredge heads and diver-assisted dredge heads.

Based on past project experience, dredging has shown positive results in the improvement of water quality with Lakes, including City of Naples Lake Manor, Fleischmann Lake, Spring Lake, and East Lake. However, the technology is expensive and requires a large vacant footprint to dewater and dispose of the dredged material. The organic muck would be removed via hydraulic vacuum dredge and dewatered using either a mechanical, passive, or combination system. In mechanical dewatering, the dredged slurry is passed through a system of shakers and belt press filters to remove and dry trash and solids for disposal. In passive dewatering, the dredged slurry is passed through a system of screens and weirs to remove trash and solids and then pumped into roll off containers lined with geotextile bags to compress and dry removed material for disposal. In both systems, effluent is returned to the lake after solids are

removed. In mechanical dredging, the effluent is typically passed through a clarifier tank prior to discharge into the lake.


In areas with limited dewatering areas, a passive dewatering system with a series of roll off containers lined with geotextile bags and a polymer injection system may be recommended. The chemical results indicated the material exceeds the FDEP SCTLs for certain contaminants and therefore the disposal will need to be revaluated during the design process to determine if the material can be mixed and beneficial reused or sent to an approved Class I landfill for disposal. The cost of the dredging alternative will be much greater if the dredged material requires disposal in a landfill.

5.2 BIO-AUGMENTED AERATION

Stagnant water leads to accumulation of harmful and dangerous bacteria, low dissolved oxygen prohibits more beneficial aerobic bacteria from living, muck accumulates faster than the anaerobic bacteria can process it, and excess nutrients from fertilizer and run-off add to the cloudiness of the water. Aeration can correct and reverse these problems. When an aeration system is installed and turned on in a water body, a rotation of water begins that forms a doughnut pattern around the diffuser, see figure below. Water is taken into the bubble stream at the diffuser and moved toward the surface by the rising bubbles.

Introduction of aerobic bacteria will expedite this process and will cause compression of the muck as the bacteria breaks down the organic material. When the Lake bottom is anaerobic, roots and other organic material pile up without being decomposed. This leads to a large collection of organic material that remains in an undecomposed state until it is slowly broken down by anaerobic bacteria. Anaerobic decomposition is 30 to 40 times slower than aerobic decomposition, and many lakes accumulate organic material due to fertilizer runoff and other contaminates faster than this process occurs. With the introduction of oxygen at the lakebed, aerobic bacteria can take over and decompose muck faster. The bacteria that will be introduced to accomplish this are broad spectrum strains of naturally occurring bacteria with the ability to degrade most organic compounds.

Bio-augmented aeration consists of small solar powered aeration systems coupled with biological enhancements such as macro-algae. Bio-augmented aeration is completed in a modular approach, with a typical spacing of approximately 100 feet between aeration systems.

5.3 FLOATING ISLANDS

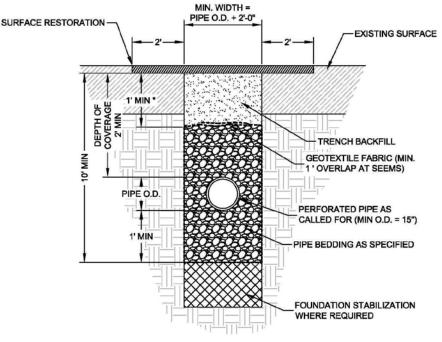
Floating islands provide nutrient uptake from the permanent pool of the wet detention pond. Floating islands generally consist of components of a typical wetland, but instead of a soil medium, the roots are anchored in an inert, floating medium and suspended within the water column. This provides the plants direct access to the soluble, bioavailable nutrients that are within the water column and targeted for removal. The floating root mass also provides an ideal substrate for periphyton growth, which works synergistically with the emergent vegetation to enhance nutrient uptake and sequestration. If designed correctly, this direct interaction between wetland root mass and water column nutrients can provide for very efficient nutrient flux and uptake and represents one of the strengths of these hydroponic systems.

Floating island nutrient removal efficiency can be variable and is highly dependent upon proper installation and maintenance. Researchers at University of Central Florida (Chang, et al., 2012) reported removal of up to 54% of TP, 32% of TN, and 48% of nitrate where the rooting media included Bold & GoldTM. Researchers from New Zealand have reported about 40% removal of TSS and suspended Cu (Borne, et al. 2013), and more than 50% removal of TN and TP (White and Cousins, 2013). Researchers sometimes recommend covering 5% or less of stormwater ponds by floating islands, with coverage of less than 5% resulting in lesser pollutant removal effectiveness. Annual maintenance costs are estimated at less than 5% of construction cost. Cost information from Virginia Cooperative Extension Publication BSE-76P (Sample, et al. 2013).

However, floating islands were previously installed and subsequently removed from North Lake at the request of residents. Therefore, this technology may not be recommended for North and South Lake.

5.4 LITTORAL SHELF MODIFICATIONS AND PLANTINGS

Littoral shelf plantings and modifications can limit nutrients and runoff from the adjacent lawns from entering the lake, as well as provide additional nutrient uptake within the lake from the additional littoral shelf plants that are dependent on the available nutrients within the lake targeted for removal. In addition to water quality benefit, littoral shelf modification of the overly steep areas within the banks would provide a safety upgrade for the lake to return the side slopes to a more gradual slope.


Sediment dredged from the lakes can sometimes be used to stabilize eroded shorelines within the lake, as was done on a similar project in Ocean Pines, Maryland where the dredge material from a tidal canal was dredged into geobags and used on the shoreline for stabilization. The dredge material (organic sediment/muck) was pumped directly into the geobags, which were already laid in place on the shoreline. The geobags then dewatered back into the source canal while the muck was contained in the geobags. Eight inches of stone was placed on top of the geobags and capped with articulating concrete block mat at about a 5:1 slope. Some design aspects that were considered were the time of dewatering, as the organic material would take six to nine months to dewater to 90% compaction. To combat this, they placed geotextile material on top of the geobags to run equipment over the bags during construction and provide structural stability for the bags, while still allowing water to dewater from the geobags. They also designed an anchor system to hold the bags in place and provide structural stability, which allowed them to place concrete on unconsolidated dredge material without too much shifting during construction (Gennaro 2005). However, further review of the analytical sediment data from North Lake and South Lake is needed before recommending this technology. Contaminant concentration in sediment shoreline stabilization could potentially cause lasting water quality issues from the leaching of the contaminated sediment.

Littoral shelves not only provide treatment removal efficiencies for TP and TN, they also increase habitat for birds and fishes to thrive. Although littoral shelves provide biological uptake, previous research has indicated that a vast majority of removal processes occur within the Lake rather in the littoral zone vegetation (Harper, 1985; Harper, 1988; and Harper and Herr, 1993). Installation costs for littoral shelves can range from \$20,000 to \$30,000 per acre.

5.5 EXFILTRATION TRENCHES

Exfiltration trenches consist of a subsurface retention system incorporating conduit such as perforated pipe surrounded by natural or artificial aggregate which would temporarily store and allow runoff to percolate into the surrounding soil. Exfiltration trenches promote more efficient infiltration of surface runoff to shallow groundwater tables by detaining stormwater and evenly distributing it throughout the base of the trench. Exfiltration trenches reduce pollutant loads primarily by way of surface runoff volume reduction, however additional reductions in suspended solids, oxygen demanding materials, heavy metals, bacteria, and some varieties of pesticides and nutrients such as phosphorus may be removed as runoff percolates through the soil. Exfiltration trenches can remove 60 to 100% of trace metals, 40 to 80% of TP and 40 to 80% of TN (SFWMD 2002). Installation costs for exfiltration trenches can range from \$2.50 to \$7.91 per cubic ft of treatment volume.

* OR TO WATER ELEVATION, WHICHEVER IS HIGHER

5.6 NUTRIENT SEPARATING BAFFLE BOXES AND CURB INLET BASKETS

Curb inlet baskets (CIB) are designed to be placed in front of a curb inlet or opening to prevent the migration of sediment into the storm drain system while allowing water to pass through. The filter allows water to temporarily pond behind the inlet which allows deposition of suspended solids. Sediment and soluble pollutants such as phosphorus and petroleum hydrocarbons are filtered from runoff water as it passes through the interior organic media. Other advantages of installing inlet filters include easy maintenance, replacement, and repair.

Nutrient separating baffle box (NSBB) is a structural BMP used for water quality treatment at the outfall of storm drains. The box primarily removes sediment and suspended solids from stormwater. The Type II boxes widely used in South Florida consist of an aluminium screen basket with a horizontal bottom at an elevation below the invert of the influent pipe but above the top of baffles. Incoming flow passes through the screen basket, which captures leaves, trash, and other large materials. In addition to capturing the large sized materials and preventing their passage into the baffle box effluent, the material captured in the screen basket is held above and out of the water column. The purported effect is to reduce or eliminate the leaching that would occur if the captured material were submerged. Since leaching of leaves would release biochemical oxygen demand, nitrogen, and phosphorus, removing leaves from the stormwater and holding the captured leaves out of the water column results in a reduction of nutrient loading to the receiving water body.

An evaluation of NSBB based on Suntree technology generally removes 90% TSS, 20% TN and 19% TP from the water being directed to the system. An evaluation of CIBs removal capacity was performed by the Orange County Lake Management Program and determined from a sample of 250 CIBs units that average annual reductions of 0.20 kilogram per year TN and 0.050 kilogram per year TP could be achieved for each CIB (Dix et al., 2011).

5.7 RAIN GARDENS

Rain gardens are shallow, constructed depressions that are planted with deep-rooted Florida-friendly plants. A rain garden slows down the rush of water from impervious surfaces, holds the water for a short period of time and allows it to naturally infiltrate into the ground. Rain gardens are usually integrated into a site's landscaping to receive runoff from hard surfaces such as a roof, a sidewalk, a driveway, or parking area. Rain gardens offer significant habitat enhancement and aesthetic value while being optimized for stormwater runoff treatment. Rain gardens are among the most effective BMP at removing pollutants from stormwater. Treatment primarily occurs in the root zone and soil media, where nutrients and dissolved pollutants are removed. Site applications of rain gardens include open spaces, parks, golf courses, commercial or industrial developments, and residential developments.

Rain gardens allow approximately 30 percent of runoff to be filtered into the ground. A properly designed rain garden can filter one inch of rainfall in four hours. Rain gardens also filter stormwater pollution, around 90 percent of Cu, lead and zinc; 50 percent of nitrogen; and 65 percent of phosphorus, which could otherwise flow into storm drains and eventually bodies of water (American Society of Landscape Architects, 2018).

5.8 VEGETATED SWALES

Treatment swales are shallow stormwater conveyance channels with vegetation covering the side slopes and bottom. Treatment occurs as runoff flows through the vegetation and infiltrates into the soil matrix. Swales can be designed as part of the stormwater conveyance system and can eliminate the need for some curbs, gutters, and storm drains. They are also well suited to treat runoff from roads and highways because of their linear nature. The treatment effectiveness is correlated to the residence time of the runoff in the swale, and therefore, flow-based swales tend to be considerably longer than other types of treatment BMPs. Site applications of vegetative swales include road shoulders and medians, parking lot islands, open spaces, and parks. Swales can reduce TP by 25%, TN by 10% and TSS by 65% (STEPL, USEPA, 2004). Grass swale installation can cost \$0.60 to \$1.60 per sq. ft (SFWMD, 2002)

The City of Naples Streets and Stormwater Department is an active partner in the community promoting and providing technical information on the use of treatment swales to reduce runoff volumes and pollutant concentrations into the surrounding Naples Bay and Gulf of Mexico (City of Naples, 2014).

5.9 CAPPING

Capping can be used to encase organic sediments. Capping includes using an excavator to place clean fill to effectively bury the organic-rich sediments and prevent the consumption of oxygen from the water column. Capping can decrease water depth, therefore, waterbodies that are good candidates for capping include those that have a significant amount of organics accumulated on the bottom, but not so significant that the waterbody requires the removal of organics to ensure that stable bathymetry persists. In a canal capping project recommended by WSP, canals with a soft sediment thickness greater than 0.75 feet and water depth greater than 10 feet were considered potentially suitable for capping. To develop a capping recommendation, site-specific information such as percent organic content is used to verify potentially suitable waterbodies. Also, it is recommended that during the project design phase the appropriate gradation of fill material is determined through an evaluation of sediment cores to ensure that gas does not get trapped as the material is placed on the canal bottom.

6 ALTERNATIVES ANALYSIS

As part of the final feasibility analysis, WSP will quantitatively evaluate conceptual BMPs. The below analysis (**Table 5**) provides a preliminary qualitative comparison of each potential BMP type discussed above and the potential site-specific pros and cons for implementation in stormwater lakes in developed urban/residential environments.

BMP Pros		Cons
Primary		
Dredging	Removes the contaminated sediment and provides additional storage for the Lake. Restarts the stormwater lake treatment capabilities at completion of project. No long-term operation and maintenance.	Requires a significant staging area for dewatering. Construction impacts, such as noise, traffic, and aesthetics for the surrounding property owners. Potential high cost for disposal of material based on chemical analysis.
Bio-Augmented Aeration	Low cost to install and minimal staging area restraints for equipment.	Operation impacts, such as noise, and aesthetics for the surrounding property owners. Long term operation and maintenance.
In-Lake		
Floating Islands	High efficiency at pollutant removal and low cost to install and maintain	Routine maintenance required to ensure effectiveness and reduce Lake aesthetics for the surrounding property owners.
Littoral Shelf Modifications and Plantings	High efficiency at pollutant removal and low cost to install and maintain. Provides shoreline stabilization and aesthetics for the surrounding property owners.	Routine maintenance required to ensure effectiveness. If used, geotextile bags filled with Lake sediment have a potential for leeching back into the Lake and causing continued water quality impacts.
In-catchment		continued water quarty impacts.
Exfiltration Trenches	High efficiency at pollutant removal and small footprint for implementation.	Routine maintenance required to ensure effectiveness. Limited impact to the watershed and Lake.
Nutrient Separating Baffle Boxes and Curb Inlet Baskets	NSBB high efficiency at pollutant removal and provides educational feature for surrounding community. CIBs small footprint and easy to install.	Routine maintenance required to ensure effectiveness. CIB provide limited impact to watershed and Lake. NSBB high cost and requires modification to stormwater drainage system.
Rain gardens	Provides aesthetics to the surrounding community.	Limited impact to the watershed and Lake. Routine maintenance required to ensure effectiveness.
Vegetated swales	High efficiency at pollutant removal and low cost to install and maintain. The City is already implementing	Limited impact to the watershed and Lake. Need land to provide sufficient storage to provide pollutant removal efficiencies.

Table 65. BMP Technologies Pros vs. Cons.

BMP	Pros	Cons
	vegetated swales within owned right	
	of ways.	

Further evaluation is needed on the primary technologies for effectiveness, ease to implement, ease of permitting, property owner disruption, time to achieve the restoration, and cost for implementation, and operation, and maintenance. Based on the additional analysis, recommended technologies will subject to an evaluation criterion to rank the technologies by potential for success in improving the water quality associated with the lakes in addition to implementation cost. All criteria will be scored from 0 to 5, with 0 being worse and 5 being best (**Table 6**). Rankings are under development based on continued analysis, including ICPR and BMP Trains modeling.

	Effective	Ease to		Construction Impacts (homeowner				
	ness (0-	Implement	Permitting	disruption)	Time	Cost		
Technology	5)	(0-5)	(0-5)	(0 to 5)	(0-5)	(0 to 5)	Total	Rank
			ry Technolog	ies (in-Lake)				
Dredging	5	3	5	2	4	3	22	1
Capping	3	4	4	2	4	4	21	2
		Seconda	ry Technolog	ies (upstream)				
Curb Inlet Baskets	5	4	5	5	4	5	28	1
Rain Gardens	3	4	4	4	3	4	22	2
Exfiltration	4	3	4	3	3	4	21	3
Trenches								
Vegetated Swales	2	3	4	4	4	3	20	4
Nutrient Separating	5	2	4	4	2	2	19	5
Baffle Boxes								
		Second	ary Technolog	gies (in-Lake)				
Aeration	4	4	4	4	4	4	24	1
Water Control								
Structure	4	3	4	3	3	3	20	2
Modifications								
Littoral Shelf								
Modifications,	2	2	2	2	2		10	2
invasive species removal and	3	2	3	3	3	4	18	3
plantings								
Floating Islands	2	3	3	2	2	3	15	4
=	Ĺ	3	3	2	2	3	15	4
Bio-augmented Aeration	2	2	3	2	2	3	14	5

Notes:

Effectiveness: 5=most effective, 0= least effective

Ease to implement: 5=easiest to implement, 0=most difficult to implement

Permitting: 5=easiest to permit, 0=most difficult to permit

Homeowner Disruption: 5=least homeowner disruption, 0=most homeowner disruption

Time: 5=shortest duration until expected water quality improvements, 0=longest duration until expected water quality improvements

Cost: 5=least expensive, 0=most expensive

Total: sum of scores

Rank: rank based on scores, where highest score is ranked first (1) and lower scores follow.

6.1 SUMMARY

North Lake

In review of the data collection efforts and technology evaluation, North Lake restoration recommendation is shown below:

<u>Primary</u> – Dredging to remove unconsolidated sediments which removes contaminants and provide additional storage for stormwater treatment effectiveness.

Secondary

In-Lake - Water Control Structure Modification will provide control to the City to increase retention time during dry season and mean annual events, at the same time this structure will allow for the City to be prepared for large storm events to draw down the lake for flood protection to residents. Littoral Shelf Modifications, invasive species removal, and plantings will provide nutrient uptake effectiveness for the lake. Aeration will provide increased dissolved oxygen concentrations to reduce nutrients and provide for continuous turnover for water quality improvement.

Upstream - Curb inlets will be placed at existing filters to provide trash and sediment capture within the watershed. The rain garden, vegetated swale, and/or exfiltration trench will be evaluated within the existing median to the north of the lake to provide additional stormwater treatment prior to discharging into the lake.

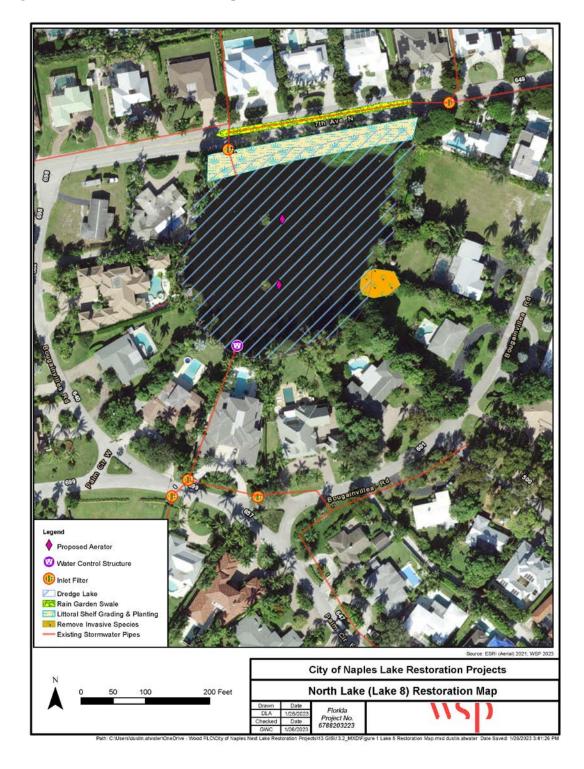


Figure 13. North Lake Restoration Map.

South Lake

In review of the data collection efforts and technology evaluation, South Lake restoration recommendation is shown below:

<u>Primary</u> – Dredging to remove unconsolidated sediments which removes contaminants and provide additional storage for stormwater treatment effectiveness.

Secondary

In-Lake - Water Control Structure Modification will provide control to the City to increase retention time during dry season and mean annual events, at the same time this structure will allow for the City to be prepared for large storm events to draw down the lake for flood protection to residents. Invasive species removal and plantings will provide nutrient uptake effectiveness for the lake. Aeration will provide increased dissolved oxygen concentrations to reduce nutrients and provide for continuous turnover for water quality improvement.

Upstream - Curb inlets will be placed at existing filters to provide trash and sediment capture within the watershed.

Figure 14. South Lake Restoration Map

7 FUNDING EVALUATION

Obtaining sufficient project funding is one of the most challenging steps in any restoration project. The focus of this section is to accomplish the following objectives:

- Review and identify the funding opportunities,
- Evaluate the funding needed and the breakdown of cost per parcel based on private vs. public.

The City has several funding options to generate revenue to conduct restorations at North and South Lakes, with varying levels of complexity in procedures to implement. The purpose of generating revenue is a key consideration. The City may:

- Create a Special Tax District, with the support of voters in the watershed: An example of this is the East Naples Bay Special Taxing District established in 1987. Special Tax Districts are similar in function to an MSBU (Municipal Service Benefit Unit), except they require a vote of the impacted property owners. The accounting of the revenue is separate from other funds of like purpose, such as the Stormwater Utility. Providing public education and outreach is critical to assist in informing the impacted electorate of the need, purpose, structure, and impacts of a millage for improvements to the Lakes, both immediate and long-term needs. The State provides guidance on the process and the mandatory elements of the local ordinance to set up a special tax district.
- Create a Special Non-ad valorem Assessment, based on special benefit to property owners in the watershed, referred to as MSBU: Typically, an MSBU does not provide continuous revenue to support long-term operation and maintenance of the Lakes. It distributes the cost of the project to all property owners in the watershed. An assessment role is prepared, on a property-by-property basis. An interest rate is established, providing to each owner a payback period, typically up to six years, but can be up to 20 years.
- Increase Stormwater Utility fees, citywide, to include all lake management maintenance and operational programs: The City's Stormwater Fund may address the cost of project implementation and on-going maintenance by absorbing the cost within the current budget, prioritizing the project within the Capital Improvement Project and on-going maintenance programs and/or increasing current rates citywide.
- Budget capital project needs from City general fund reserves and incorporate continuing maintenance needs into
 on-going program priorities within the Stormwater Utility, with no rate increase attributable to the North and
 South Lakes capital project.
- Budget capital project needs from the Stormwater Utility reserves, adding the project to the Utility CIP and implement when enough reserves can be allocated to North and South Lakes.

Loans and grants are another funding option to consider. The Clean Water State Revolving Fund provides low-interest loans to local governments to plan, design, and build or upgrade wastewater, stormwater, and nonpoint source pollution prevention projects. The priority for these funds is heavily targeted to water supply and wastewater management capital needs, with only two stormwater projects identified as priorities in 2019, both from small and/or disadvantaged communities. After research, it was determined that receiving a loan is not a viable option.

WSP has direct experience with obtaining and managing local, state, and federal grant funding for a variety of projects including assisting the City with the Lake Manor South Florida Water Management District (SFWMD) Grant. In addition to the SFWMD grant program offered by the State of Florida, the FDEP administers a funding program, total maximum daily loads to help local governments implement BMPs designed to reduce pollutant loads to impaired waters from urban stormwater runoff.

There are six key considerations WSP uses in evaluating the funding options available.

1. Contribution from Property Owners: Will all property owners contribute revenue with shared responsibility or will the charges to fund the services only be assigned to taxable parcels?

- 2. Vote of Impacted Property Owners: Is a vote of the property owners within the watershed required? This adds complexity to the process and requires education and outreach to the impacted property owners to provide information on the special election.
- 3. Public Outreach and Education: Is public support critical to implementation of the capital project and longterm maintenance needs? Outreach must address the ultimate purpose for improving and sustaining the performance of the Lakes over time and motivate people to act.
- 4. Continuous Revenue Generation: To maintain the Lakes capacity and performance in water quality protection, provide routine maintenance, generate a reserve for future capital needs and dredging and upgrade systems installed, as an on-going component of stormwater operations, requires a revenue that is dedicated and continuous.
- 5. Capital and Maintenance Program: Is it the City's purpose to address the current conditions of the Lakes and on-going, long-term maintenance? If yes, a program budget is developed and funded annually.
- 6. Capital Only: Is it the City's purpose to address the current condition of the Lakes? If yes, resources in the Capital Improvement Project (CIP) budget are funded as a one-time cost.

Funding options are not equal in complexity and ease of implementation. The following table provides a comparison of attributes.

Revenue Source	All Properties	Voter	Public	On-going	Capital and	Capital
Revenue Source	Contribute	Approval	Education	Revenue	Maintenance	Only
Utility Fees – No Increase*	Yes**	No	Yes	Yes	Yes	Yes
Utility Fees – Citywide	Yes**	No	Yes	Yes	Yes	Yes
Special Tax District	No	Yes	Yes***	Yes	Yes	Yes
Special Assessment	Yes	No	Yes***	No	No	Yes
District	105	NO	105	NU	NO	105
General Fund Reserves	No	No	Yes	No	No	Yes
Utility Fund Reserves	Yes	No	Yes	No	No	Yes

* Utility Fees with no increase in rates requires prioritization of the project against other needs funded by the utility and determine when to dredge the Lake based on funding.

** Vacant and undisturbed parcels are exempt from the utility fee if not served by a water meter.

*** Public education is critical during the implementation of a Special Tax District or a Special Assessment District.

If continuous revenue creation to maintain the Lakes in perpetuity is a key driver, a Special Tax District or budget from the Stormwater Utility can sustain revenue growth over decades. If a one-time capital project is the implementation approach, then all methods listed can accomplish the goal.

8 SUMMARY AND NEXT STEPS

To support the restoration of North and South Lakes, WSP conducted data collection and began an evaluation of water quality improvement technologies that may be used in the North Lake and South Lake restoration projects. Traditional methods for removal of highly organic sediments, such as mechanical dredging and hydraulic dredging are commonly used in stormwater lakes and may be recommended at North Lake and South Lake. The removal of highly organic sediments would:

- Reduce the re-release of nutrients stored within the sediments (i.e., reduce internal loading) to the water column and improve the efficiency of treatment of nutrient-rich stormwater inputs.
- Reduce the potential for dissolved oxygen depletion that can produce objectionable odors and potential fish kills.
- Increase the depth and storage capacity of the lake to improve its flood mitigation effectiveness
- Increase the residence time of water in the lake which should improve effectiveness of North Lake and South Lake in removing stormwater pollutants including TSS, TN, and TP, and improve water quality in discharges to Alligator Lake and ultimately the Gulf of Mexico.

The recommended removal methodology will be dependent on the thickness, consistency, and characteristics of the highly organic sediment material. Mechanical dredging requires heavy equipment and would not be efficient in removing fine organic sediment. Mechanical dredging also requires a large footprint for dewatering since the material needs ample time to dry for hauling to a disposal area. Hydraulic dredging is a relatively low impact method of sediment removal with few effects on the surrounding environmental system.

Other design elements for North and South Lakes and their watersheds to reduce downstream loadings of pollutants of concern and improve water quality have been reviewed for implementation. These could include littoral shelves, enclosed sediment sumps or catch basins at stormwater inlets/inflows to remove trash and debris prior to entering the infrastructure system, rain gardens in open spaces within the basin (either in public right of ways or in homeowner areas), and baffles projecting from the lake bank into the lake to increase retention time. Public involvement, including nearby residents, will also be important to the implementation and success of the North and South Lakes improvements. One of the biggest challenges for this project will be coordination with the public involvement would need to include an outreach program involving agency coordination and outreach to the media, businesses, community groups, and the general public using appropriate methods and tools to solicit input and provide details on the project. The outreach program would also include mailers (flyers) directed at elected officials, agencies, property owners and tenants to announce public information meetings and provide information about the project.

BIBLIOGRAPHY

AECOM, 2018. City of Naples 2018 Stormwater Master Plan Update.

- Amec. 2012. City of Naples Stormwater Quality Analysis, Pollutant Loading and Removal Efficiencies.
- Amec. 2013. City of Naples Semi-Annual and Quarterly Stormwater Infrastructure Monitoring Final Report, January 2013.
- Amec. 2014. City of Naples Semi-Annual and Quarterly Stormwater Infrastructure Monitoring Final Report, March 2014.
- American Society of Landscape Architects, 2018. Improving Water Efficiency: Residential Rain Gardens. Website: https://www.asla.org/raingardens.aspx
- Borne, K.E., E.A. Fassman, Chris C. Tanner. 2013. Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc. Ecological Engineering 54:173–182.

Cardno Quarterly Stormwater Sampling Results, 2015 - 2018 (Cardno).

- Chang, N.B., M.K. Islam, and M.P. Wanielista. 2012. Floating wetland mesocosm assessment of nutrient removal to reduce ecotoxicity in stormwater ponds. Int. J. Environ. Sci. Technol. 9:453–462.
- City of Naples. 2012. City of Naples, Stormwater Lakes Maintenance & Restoration Plan, March 2012.
- City of Naples, 2014. City of Naples, City Swales, Website:

https://www.naplesgov.com/sites/default/files/Archives/Stormwater/swales%20%20_201407151345403680.pd f

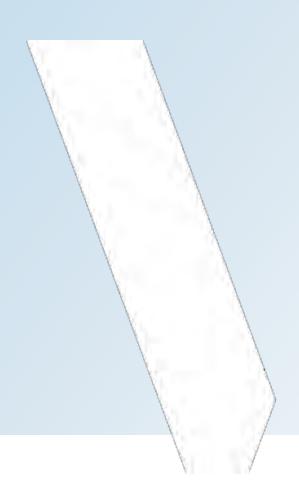
- City of Naples. 2013. Comprehensive Plan Updated 12-3-2013. Website: http://www.napleshistoricalsociety.org/pdfs/2016files/City%20of%20Naples%20Comprehensive%20Plan.pdf
- Dix, N., R. Novy, B. Catanzaro. 2011. An Evaluation of Curb and Grate Inlet Baskets: Quantification of Nutrient Removal and Associated Costs in Orange County, FL. Orange County Lake Management Program. November 2011.
- Florida Department of Environmental Protection (FDEP), 2005. Memorandum from Mike Sole, Director Division of Waste Management. Subject: Guidance for the Management of Street Sweepings, Catch Basin Sediments and Stormwater System Sediments. Florida Gulf Coast University (FGCU), Bathymetry and Sediment Characterization of Spring Lake, February 2013.
- Florida Gulf Coast University (FGCU). 2013. Bathymetry and Sediment Characterization of Spring Lake, February 2013.
- Fritz, Angela and Miller, B. CNN. September 2022. "Hurricane Ian's rainfall was a 1-in-1,000 year event for the hardest-hit parts of Florida", available at <u>https://www.cnn.com/2022/09/29/weather/hurricane-ian-1000-year-rainfall-climate/index.html</u> (accessed 12/8/2022)
- Gennaro, Nicholas De. 2005. Beneficial Uses of Dead-End Canal Dredging in Combination with Special Use Materials for Erosion Control.
- Harper, H. H. 1985. Fate of heavy metals from highway runoff in stormwater management systems (Doctoral dissertation, University of Central Florida).
- Harper, H.H., 1988. Effects of stormwater management systems on groundwater quality. *Final report. Contract* WM-190. Submitted to the Florida Department of Environmental Regulation, Tallahassee, FL.
- Harper, H.H., and Herr, J.L. August 1993. "Treatment Efficiency of Detention with Filtration Systems." Final Report to the St. Johns River Water Management District.
- Iowa State University Environmental Mesonet, "National Weather Service Raw Text Product", available at <u>https://mesonet.agron.iastate.edu/wx/afos/p.php?pil=PSHMFL&e=202210141556</u> (accessed 12/8/2022)
- Kiaghadi, A., Rifai, H.S., Crum, M. and Willson, R.C., 2022. Longitudinal patterns in sediment type and quality during daily flow regimes and following natural hazards in an urban estuary: a Hurricane Harvey retrospective.

Environmental Science and Pollution Research, 29(5), pp.7514-7531.MACTEC, 2008. Spring Lake Report of Surface Water and Sediment Testing in Naples, Collier County, Florida.

NOAA National Centers for Environmental Information, Monthly National Climate Report for September 2022, published online October 2022, retrieved on December 8, 2022

from <u>https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202209/supplemental/page-5</u>. NOAA National Environmental Satellite Data and Information Service, "Hurricane Ian's Path of Destruction",

- available at https://www.nesdis.noaa.gov/news/hurricane-ians-path-of-destruction (accessed 12/8/2022) Ogdahl, Mary E., Alan D. Steinman, and Maggie E. Weinert. "Laboratory-determined phosphorus flux from lake sediments as a measure of internal phosphorus loading." JoVE (Journal of Visualized Experiments) 85 (2014): e51617.
- Sabatier, P., Moernaut, J., Bertrand, S., Van Daele, M., Kremer, K., Chaumillon, E. and Arnaud, F., 2022. A review of event deposits in lake sediments. Quaternary, 5(3), p.34.
- Sample, D.J, C-Y Wang, and L.J. Fox. 2013. Innovative Best Management Fact Sheet No. 1: Floating Treatment Wetlands. Virginia Cooperative Extension Publication BSE-76P.
- SFWMD, 2002. Best Management Practices for South Florida Urban Stormwater Management Systems
- US Environmental Protection Agency (USEPA). 2004. Spreadsheet Tool for the Estimation of Pollutant Load (STEPL, version 3.0).
- Wanielista, M. 2020. User Manual BMP Trains. University of Central Florida, Stormwater Management Academy. Orlando: University of Central Florida. Retrieved from https://stars.library.ucf.edu/bmptrains/25/
- White, S.A., and M.M. Cousins. 2013. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecological Engineering 61:207–215.
- Yao, Q., Liu, K.B., Williams, H., Joshi, S., Bianchette, T.A., Ryu, J. and Dietz, M., 2020. Hurricane Harvey storm sedimentation in the San Bernard national wildlife refuge, Texas: Fluvial versus storm surge deposition. Estuaries and Coasts, 43(5), pp.971-983.



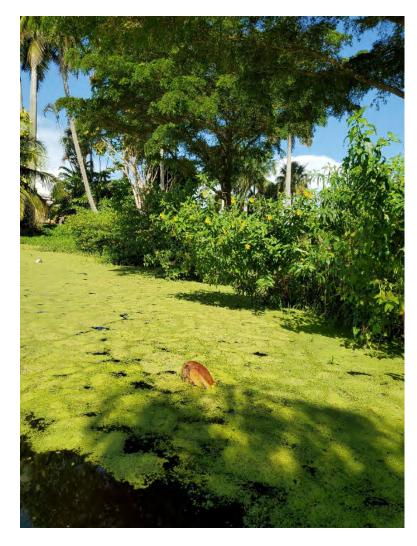
APPENDIX

ECOLOGICAL EVALUATION DOCUMENTATION

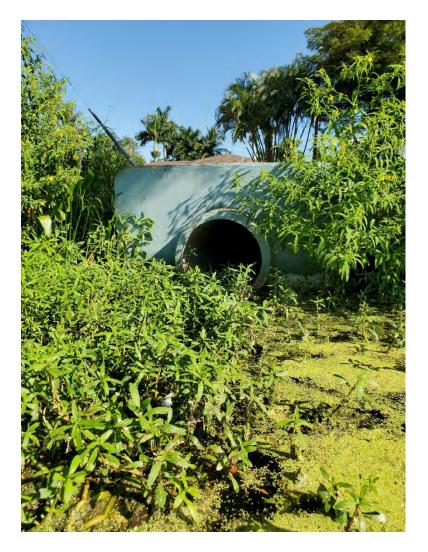
PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name A		Application Numbe	er	Assessment Area Nam	Assessment Area Name or Number		
North Lake			TBD				
FLUCCs code	Further classifica	ation (optional)		Impact or Mitigation Site?	Assessment Area Size		
3220		N/A		1.76 acres			
Basin/Watershed Name/Number	Affected Waterbody (Clas	ss)	Special Classificati	ON (i.e.OFW, AP, other local/state/fed	tate/federal designation of importance)		
HUC 03090204	N/A		N/A				
Geographic relationship to and hyd	rologic connection with	wetlands, other se	urface water, upla	nds			
The project area is used as a stor	mwater lake and discha	rges into South La of Mexico via bea		es into Alligator Lake befor	e discharing into the Gulf		
Assessment area description The proposed area is surrounded retention and receives a significant <i>Alternathera philoxeroides</i> and	amount of stormwater i Ludwigia peruviana an	runoff from the ad	jacent roadways a % of desirable spe of the assessment	and residential developmen ecies. About two-thirds of th	t. The site is dominated by le site was covered by		
Significant nearby features			Uniqueness (co landscape.)	nsidering the relative rarity	in relation to the regional		
Residential pr	operties and streets.		The subject area is fairly common in the region.				
Functions			Mitigation for pre	vious permit/other historic (ise		
The existing waterbody fu	nctions as stormwater r	etention.	No.				
Anticipated Wildlife Utilization Base that are representative of the asses be found)		• •	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)				
Various wadi	ng birds and fishes.		Wood stork (T), foraging and wading, low use.				
Observed Evidence of Wildlife Utili	zation (List species dire	ectly observed, or	tother signs such a	s tracks, droppings, casing	s, nests, etc.):		
	Muscovy ducks, s	snook, snowy egre	et, moorhen, and n	nosquitofish.			
Additional relevant factors:							
N/A							
Assessment conducted by:			Assessment date	e(s):			
Erik Oij/ Genevieve Patrick			9/1/2022				

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

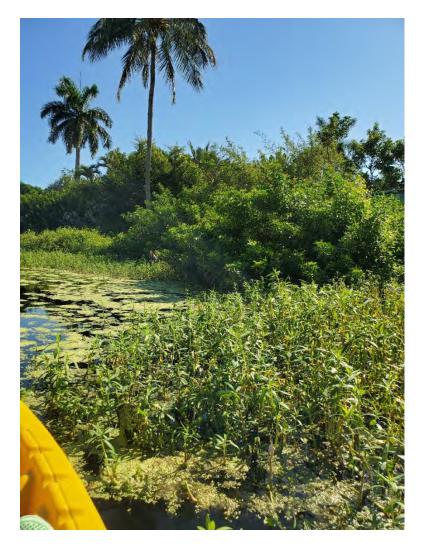

Site/Project Name		Application Number		Assessment Area Name or Number	
North Lake		TBD			
Impact or Mitigation		Assessment conducted by:		Assessment date):
TBD		Erik Oij/ Genevieve Patrick		9/1/2022	
Scoring Guidance	Optimal (10)	Moderate(7)	Moderate(7) Mini		Not Present (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/su		evel of support of d/surface water unctions	
.500(6)(a) Location and Landscape Support w/o pres or <u>current</u> with 4 0		ed by medium density residential development and paved roadways. There is minimal adja The site may be utilized as a source of freshwater for species in the immediate area.			
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with 4 0		site is poor. The lake is used as stormwater retention and receives a significant amount of stor ljacent roadways and residential development. Evidence of eutrophication is present, likely du fertilizer runoff from the adjacent properties.			
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with 2 0	native vegetation. There are no	shrubs or t <i>Ludwigia pe</i>	rees present. The <i>ruviana</i> and had	e vegative community stucture with ere is minimal SAV within the lake. less than 5% of desirable species. the assessment.	

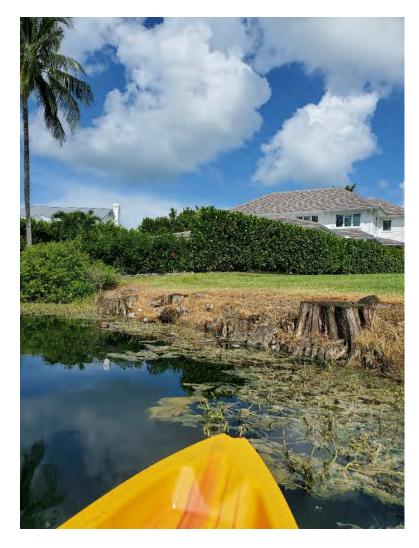
PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

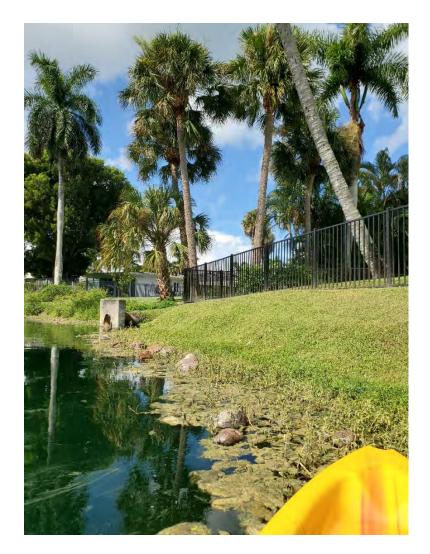

Site/Project Name A		Application Numbe	r	Assessment Area Name or Number			
South Lake			TBD				
FLUCCs code	Further classifica	tion (optional)		Impact or Mitigation Site?	Assessment Area Size		
3220		N/A		TBD	4.35 acres		
Basin/Watershed Name/Number	Affected Waterbody (Clas	ss)	Special Classification	ON (i.e.OFW, AP, other local/state/fed	eral designation of importance)		
HUC 03090204	N/A			N/A			
Geographic relationship to and hyd	rologic connection with	wetlands, other su	urface water, uplai	nds			
The project area is used as a storn	nwater lake and discha	rges into into Allig	ator Lake before c	lischaring into the Gulf of N	lexico via beach outfall 6.		
Assessment area description							
The proposed area is surrounded retention and receives a significant Alternathera philoxeroides. Do	amount of stormwater	runoff from the ad	jacent roadways a	and residential developmer	t.The site is dominated by		
Significant nearby features			Uniqueness (co landscape.)	nsidering the relative rarity	in relation to the regional		
Residential pro	operties and streets.		The subject area is fairly common in the region.				
Functions			Mitigation for previous permit/other historic use				
The existing waterbody fu	nctions as stormwater r	etention.	No.				
Anticipated Wildlife Utilization Base that are representative of the asses be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)				
Various wadi	ng birds and fishes.		N/A				
Observed Evidence of Wildlife Utili	zation (List species dire	ctly observed, or o	other signs such a	s tracks, droppings, casing	s, nests, etc.):		
Moorhen, little green heron, mosquitofish, blue jay, crow,			great egret, white	ibis, muscovy duck, mocki	ng bird.		
Additional relevant factors:							
N/A							
Assessment conducted by:			Assessment date	e(s):			
Erik Oij/ Genevieve Patrick		9/1/2022					

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

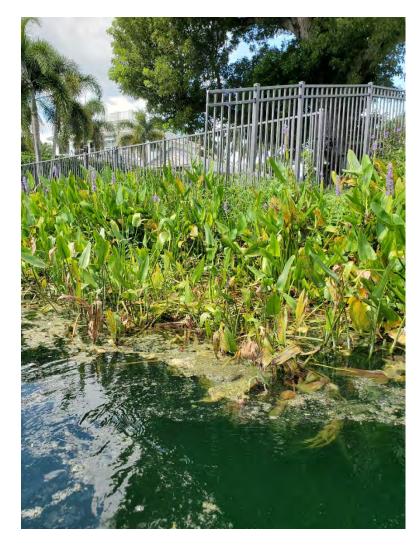
Site/Project Name		Application Number		Assessment Area Name or Number		
South Lake		TBD				
Impact or Mitigation		Assessment conducted by:		Assessment date):	
TBD		Erik Oij/ Genevieve Patrick			9/1/2022	
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present (0)	
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	ition is less than I, but sufficient to aintain most tland/surface		Condition is insufficient to provide wetland/surface water functions	
.500(6)(a) Location and Landscape Support w/o pres or <u>current</u> with 4 0		ed by medium density residential development and paved roadways. There is minimal adja The site may be utilized as a source of freshwater for species in the immediate area.				
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with 4 0	film on the water surface.	site is poor and has a blue tint to it likely due to an additive. During the site assessment, there inface. The lakes are used as stormwater retention and receive a significant amount of storm acent roadways and residential development. Evidence of eutrophication is present, likely de fertilizer runoff from the adjacent properties.				
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with 2 0		ve vegetatio	on. There are no s	e up the majority of the vegative hrubs or trees present. There is <i>philoxeroides</i> .		


Photograph 1 – North Lake Alternathera philixeroides and Ludwigia peruviana with heavy Lemna sp. cover.


Photograph 2 – North Lake Alternathera philixeroides with Lemna sp. present in front of culvert.


Photograph 3 – North Lake Lemna sp. and Alternathera philixeroides covered most of the North Lake.

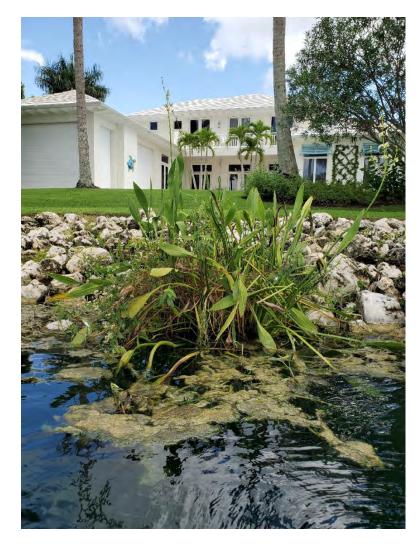
Photograph 4 – North Lake Schinus tereninthifolia is present in the background of this photo with Alternathera philixeroides and Lemna sp. in the foreground.



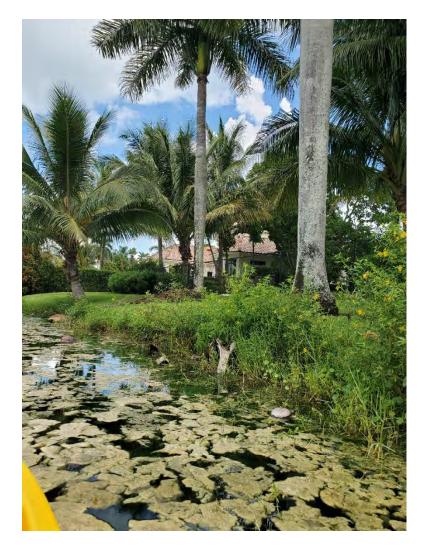
Photograph 7 – South Lake Cypress stumps along littoral edge.

Photograph 8 – South Lake Maintained, mowed lawn of residential property along the littoral edge.

ATTACHMENT A

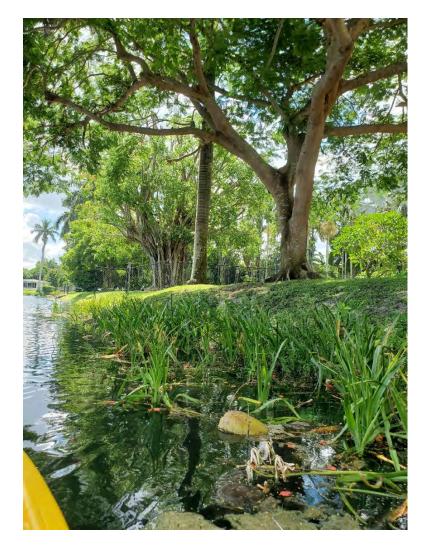


Photograph 9 – South Lake *Pontederia cordata* present.



Photograph 10 – South Lake Many lawns were maintained to the littoral edge with large slopes.

ATTACHMENT A



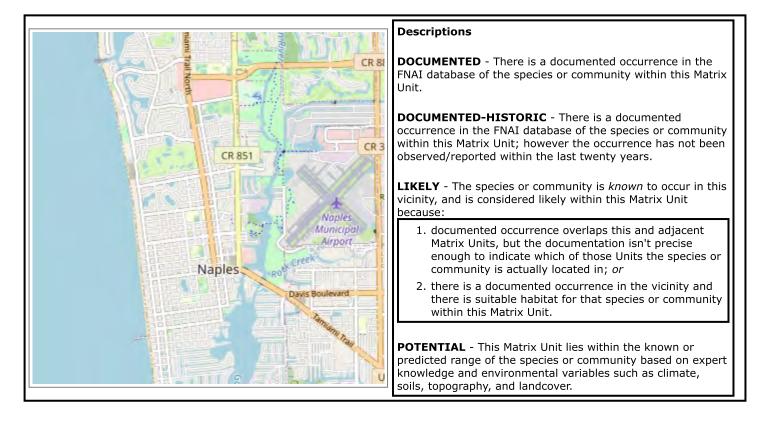
Photograph 11 – South Lake *Pontederia cordata* with riprap along littoral edge.

Photograph 12 – South Lake Ludwigia peruviana and Alternathera philixeroides present along littoral edge.

ATTACHMENT A

Photograph 13 – South Lake *Crinum Americanum* present along littoral edge.

Florida Natural Areas Inventory


Biodiversity Matrix Query Results

UNOFFICIAL REPORT Created 8/30/2022

(Contact the FNAI Data Services Coordinator at 850.224.8207 or kbrinegar@fnai.fsu.edu for information on an official Standard Data Report)

NOTE: The Biodiversity Matrix includes only rare species and natural communities tracked by FNAI.

Report for 1 Matrix Unit: 38703

Matrix Unit ID: 38703

1 Documented Element Fou	Ind
--------------------------	-----

Scientific and Common Names	Global	State	Federal	State
	Rank	Rank	Status	Listing
<i>Anax amazili</i> Amazon Darner	G5	S2	Ν	N

1 Documented-Historic Element Found

Scientific and Common Names	Global	State	Federal	State
	Rank	Rank	Status	Listing
<u>Haliaeetus leucocephalus</u> Bald Eagle	G5	S3	Ν	Ν

https://data.labins.org/mapping/FNAI BioMatrix/GridSearch.cfm?sel id=38703&extent=619190.6457,239729.4809,620799.9907,241338.8238

2 Likely Elements Found

State Federal

ederal

State

8/3022,TASCHMENT A	FNAI Biodiver	rsity Matrix			
	Rank	Rank	Status	Listing	
<u>Sciurus niger avicennia</u> Big Cypress Fox Squirrel	G5T2	S2	Ν	ST	
<u>Stylisma abdita</u> scrub stylisma	G3	S3	Ν	Е	

Matrix Unit ID: 38703

25 Potential Elements for Matrix Unit 38703

Scientific and Common Names	Global Rank	State Rank	Federal Status	State Listing
<u>Acipenser oxyrinchus desotoi</u> Gulf Sturgeon	G3T2T3	S2?	т	FT
<i>Ardea herodias occidentalis</i> Great White Heron	G5T2	S2	Ν	Ν
<u>Athene cunicularia floridana</u> Florida Burrowing Owl	G4T3	S3	Ν	ST
<u>Crocodylus acutus</u> American Crocodile	G2	S2	т	FT
<u>Drymarchon couperi</u> Eastern Indigo Snake	G3	S2?	Т	FT
<u>Dryobates borealis</u> Red-cockaded Woodpecker	G3	S2	E, PT	FE
<i>Eragrostis pectinacea var. tracyi</i> Sanibel lovegrass	G5T1	S1	Ν	E
<u>Eretmochelys imbricata</u> Hawksbill Sea Turtle	G3	S1	Е	FE
<u>Eumops floridanus</u> Florida bonneted bat	G1	S1	E	FE
<u>Gopherus polyphemus</u> Gopher Tortoise	G3	S3	С	ST
<u>Gymnopogon chapmanianus</u> Chapman's skeletongrass	G3	S3	Ν	Ν
<u>Lechea cernua</u> nodding pinweed	G3	S3	Ν	Т
<i>Linum carteri var. smallii</i> Small's flax	G2T2	S2	Ν	Е
<i>Lithobates capito</i> Gopher Frog	G2G3	S3	Ν	Ν
<u>Nemastylis floridana</u> celestial lily	G2	S2	Ν	Е
<u>Nolina atopocarpa</u> Florida beargrass	G3	S3	Ν	Т
<u>Patagioenas leucocephala</u> White-crowned Pigeon	G3	S3	Ν	ST
<u>Pteroglossaspis ecristata</u> giant orchid	G2G3	S2	Ν	Т
<i>Rallus longirostris scottii</i> Florida Clapper Rail	G5T3?	S3?	Ν	Ν
<i>Rivulus marmoratus</i> Mangrove Rivulus	G4G5	S3	SC	Ν
<i>Rostrhamus sociabilis</i> Snail Kite	G4G5	S2	E	FE
<i>Roystonea regia</i> Florida royal palm	G2G3	S2	Ν	E
<i>Setophaga discolor paludicola</i> Florida Prairie Warbler	G5T3	S3	Ν	Ν
<i>Trichechus manatus latirostris</i> Florida Manatee	G2G3T2	S2S3	т	Ν
<u>Ursus americanus floridanus</u> Florida Black Bear	G5T4	S4	Ν	Ν

Disclaimer

8/3022, ASCHMENT A

FNAI Biodiversity Matrix

The data maintained by the Florida Natural Areas Inventory represent the single most comprehensive source of information available on the locations of rare species and other significant ecological resources statewide. However, the data are not always based on comprehensive or site-specific field surveys. Therefore, this information should not be regarded as a final statement on the biological resources of the site being considered, nor should it be substituted for on-site surveys. FNAI shall not be held liable for the accuracy and completeness of these data, or opinions or conclusions drawn from these data. FNAI is not inviting reliance on these data. Inventory data are designed for the purposes of conservation planning and scientific research and are not intended for use as the primary criteria for regulatory decisions.

Unofficial Report

These results are considered unofficial. FNAI offers a <u>Standard Data Request</u> option for those needing certifiable data.

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Local office

Florida Ecological Services Field Office

✓ <u>fw4flesregs@fws.gov</u>

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

 Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ). 8/30/22, TACHMENT A

2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME	STATUS
Florida Bonneted Bat Eumops floridanus Wherever found There is proposed critical habitat for this species. The location of the critical habitat is not available. https://ecos.fws.gov/ecp/species/8630	Endangered
Florida Panther Puma (=Felis) concolor coryi Wherever found No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/1763</u>	Endangered
Puma (=mountain Lion) Puma (=Felis) concolor (all subsp. except coryi) No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/6049	SAT
West Indian Manatee Trichechus manatus Wherever found There is final critical habitat for this species. The location of the critical habitat is not available. https://ecos.fws.gov/ecp/species/4469	Threatened Marine mammal
Birds	
NAME	STATUS
Audubon's Crested Caracara Polyborus plancus audubonii No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/8250</u>	Threatened
Eastern Black Rail Laterallus jamaicensis ssp. jamaicensis Wherever found No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/10477</u>	Threatened

8/30/22, ACHMENT A

Piping Plover Charadrius melodus There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/6039</u>	Threatened
Red Knot Calidris canutus rufa Wherever found There is proposed critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/1864</u>	Threatened
Wood Stork Mycteria americana No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/8477	Threatened
Reptiles NAME	STATUS
American Alligator Alligator mississippiensis Wherever found No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/776</u>	SAT
American Crocodile Crocodylus acutus There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/6604</u>	Threatened
Eastern Indigo Snake Drymarchon couperi Wherever found No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/646</u>	Threatened
Green Sea Turtle Chelonia mydas There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/6199</u>	Threatened
Loggerhead Sea Turtle Caretta caretta There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/1110</u>	Threatened

ΔΤΤ		MEN	ГΔ
8/30/22.	7.28 PM		

Fishes NAME

NAMESTATUSGulf SturgeonAcipenser oxyrinchus (=oxyrhynchus) desotoiThreatenedWherever foundThere is final critical habitat for this species. The location of the
critical habitat is not available.The state of the
critical habitat is not available.

https://ecos.fws.gov/ecp/species/651

Insects

NAME	STATUS
Bartram's Hairstreak Butterfly Strymon acis bartrami Wherever found There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/4837</u>	Endangered
Florida Leafwing Butterfly Anaea troglodyta floridalis Wherever found There is final critical habitat for this species. The location of the critical habitat is not available. https://ecos.fws.gov/ecp/species/6652	Endangered
Miami Blue Butterfly Cyclargus (=Hemiargus) thomasi bethunebakeri Wherever found No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/3797	Endangered
Flowering Plants	

 NAME
 STATUS

 Florida Prairie-clover Dalea carthagenensis floridana
 Endangered

 No critical habitat has been designated for this species.
 https://ecos.fws.gov/ecp/species/2300

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

There are no critical habitats at this location.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern https://www.fws.gov/program/migratory-birds/species
- Measures for avoiding and minimizing impacts to birds <u>https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds</u>
- Nationwide conservation measures for birds <u>https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the USFWS Birds of Conservation Concern (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area. 8/30/22, ACHMENT A

American Kestrel Falco sparverius paulus This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/9587</u>	Breeds Apr 1 to Aug 31
American Oystercatcher Haematopus palliatus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/8935</u>	Breeds Apr 15 to Aug 31
Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1626	Breeds Sep 1 to Jul 31
Black Skimmer Rynchops niger This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/5234</u>	Breeds May 20 to Sep 15
Chimney Swift Chaetura pelagica This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Mar 15 to Aug 25
Great Blue Heron Ardea herodias occidentalis This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds Jan 1 to Dec 31
Gull-billed Tern Gelochelidon nilotica This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9501</u>	Breeds May 1 to Jul 31
Lesser Yellowlegs Tringa flavipes This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9679</u>	Breeds elsewhere

Magnificent Frigatebird Fregata magnificens This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA Prairie Warbler Dendroica discolor This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. **Red-headed Woodpecker** Melanerpes erythrocephalus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. Reddish Egret Egretta rufescens

8/30 22, TACHMENT A

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/7617

Ruddy Turnstone Arenaria interpres morinella This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Short-billed Dowitcher Limnodromus griseus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/9480

Swallow-tailed Kite Elanoides forficatus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/8938

Willet Tringa semipalmata This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Wilson's Plover Charadrius wilsonia This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Probability of Presence Summary

Breeds Oct 1 to Apr 30

Breeds May 1 to Jul 31

Breeds May 10 to Sep 10

Breeds Mar 1 to Sep 1

Breeds elsewhere

Breeds elsewhere

Breeds Mar 10 to Jun 30

Breeds Apr 20 to Aug 5

Breeds Apr 1 to Aug 20

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort ()

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (–)

8/30/22, ACHMENT A

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

			■ pr	obabilit	y of pre	sence	breed	ding sea	son la	survey et	ffort –	no data
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
American Kestrel BCC - BCR		┼║┿║	#≢∎+	++++	++++	++∎+	++++	++++	++++	+	Ⅲ ++♥	Ⅱ ∎≠+
American Oystercatcher BCC Rangewide (CON)	# +##	+++++	++ #+	+++#		++++	++++	++++	++++	++#	II+++	++#+
Bald Eagle Non-BCC Vulnerable	1001	1010	1010		 ++	++++	I +++	+	-	and a	1111	11)1
Black Skimmer BCC Rangewide (CON)	IIII	1111	IIII		1011	1111	5	191)	an Li		1111	1111
Chimney Swift BCC Rangewide (CON)	++++	++++	++++	+	1 Mil	100	1+1+	1111	#] +]	++++	++++	++++
Great Blue Heron BCC - BCR			11Q	400	Till	1111	1111	1111	<u>((</u> 1)	11111	IIII	011
Gull-billed Tern BCC Rangewide (CON)	++++	++++	++++	++++	 ++	++11+	I +++	+ II ++	+++4	+11++	++++	+11++
Lesser Yellowlegs BCC Rangewide (CON)	+++#	# + # +	+#++	+++#	++++	++++	++++	++++	++++	++#+	+#+#	Ⅲ +++
Magnificent Frigatebird BCC - BCR			1111	1111					* ++	1111		111
Prairie Warbler BCC Rangewide (CON)		+===	+===		111	+111	1++1	<u>∎</u> ++∎		IIII	+	++##
Red-headed Woodpecker BCC Rangewide (CON)		++++	+#++	++++	++++	++++	++++	++++	<mark>┼</mark> ┼║┤	• ++++	++++	++++

8/30/22, ACHMEN	NT A	A IPaC: Explore Location resources										
Reddish Egret BCC Rangewide (CON)	#I##	# + # +	ŧ∎ ∎∔	┼∎┼╪	┼∎∎∔	111+	1++1	111	++++	+ [] + []		
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Ruddy Turnstone BCC - BCR			1111			.	++11					Ш
Short-billed Dowitcher BCC Rangewide (CON)		+#+#	++++	++++	++++	++++	+++1	++++	+∎∎+		+∎∎∎	++++
Swallow-tailed Kite BCC Rangewide (CON)	++++	┼┼┼║	+ <mark>+</mark> ##	***	 	++#1	++ ∎+	1 +++	++++	++++	++++	++++
Willet BCC Rangewide (CON)	IIII	IIII	IIII	II	0010	UT+T	1717	ITTE	IIII	UH	NUL	1111
Wilson's Plover BCC Rangewide (CON)		+#+#	# +++	1111	HI	111(1111	++++	++++	++++	+++#	+11++

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the list of migratory birds that potentially occur in my specified location?

The Migratory Bird Resource List is comprised of USFWS Birds of Conservation Concern (BCC) and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the Avian Knowledge Network (AKN). The AKN data is based on a growing collection of survey, banding, and citizen science datasets and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (Eagle Act requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the Rapid Avian Information Locator (RAIL) Tool.

8/30/22 ACHMENT A

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and</u> <u>citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering or migrating in my area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may query your location using the <u>RAIL Tool</u> and look at the range maps provided for birds in your area at the bottom of the profiles provided for each bird in your results. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data</u> <u>Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird</u> <u>Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact

<u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability" of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page. NOTFOR

Marine mammals

Marine mammals are protected under the <u>Marine Mammal Protection Act</u>. Some are also protected under the Endangered Species Act¹ and the Convention on International Trade in Endangered Species of Wild Fauna and Flora².

The responsibilities for the protection, conservation, and management of marine mammals are shared by the U.S. Fish and Wildlife Service [responsible for otters, walruses, polar bears, manatees, and dugongs] and NOAA Fisheries³ [responsible for seals, sea lions, whales, dolphins, and porpoises]. Marine mammals under the responsibility of NOAA Fisheries are **not** shown on this list; for additional information on those species please visit the <u>Marine Mammals</u> page of the NOAA Fisheries website.

The Marine Mammal Protection Act prohibits the take (to harass, hunt, capture, kill, or attempt to harass, hunt, capture or kill) of marine mammals and further coordination may be necessary for project evaluation. Please contact the U.S. Fish and Wildlife Service Field Office shown.

- 1. The Endangered Species Act (ESA) of 1973.
- The <u>Convention on International Trade in Endangered Species of Wild Fauna and Flora</u> (CITES) is a treaty to ensure that international trade in plants and animals does not threaten their survival in the wild.
- 3. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following marine mammals under the responsibility of the U.S. Fish and Wildlife Service are potentially affected by activities in this location:

NAME

West Indian Manatee Trichechus manatus https://ecos.fws.gov/ecp/species/4469

Coastal Barrier Resources System

Projects within the John H. Chafee Coastal Barrier Resources System (CBRS) may be subject to the restrictions on federal expenditures and financial assistance and the consultation requirements of the Coastal Barrier Resources Act (CBRA) (16 U.S.C. 3501 et seq.). For more information, please contact the local <u>Ecological Services Field Office</u> or visit the <u>CBRA</u> 8/30/22, TACHMENT A

<u>Consultations website</u>. The CBRA website provides tools such as a flow chart to help determine whether consultation is required and a template to facilitate the consultation process.

There are no known coastal barriers at this location.

Data limitations

The CBRS boundaries used in IPaC are representations of the controlling boundaries, which are depicted on the <u>official CBRS maps</u>. The boundaries depicted in this layer are not to be considered authoritative for in/out determinations close to a CBRS boundary (i.e., within the "CBRS Buffer Zone" that appears as a hatched area on either side of the boundary). For projects that are very close to a CBRS boundary but do not clearly intersect a unit, you may contact the Service for an official determination by following the instructions here: <u>https://www.fws.gov/service/coastal-barrier-resources-system-property-documentation</u>

Data exclusions

CBRS units extend seaward out to either the 20- or 30-foot bathymetric contour (depending on the location of the unit). The true seaward extent of the units is not shown in the CBRS data, therefore projects in the offshore areas of units (e.g., dredging, breakwaters, offshore wind energy or oil and gas projects) may be subject to CBRA even if they do not intersect the CBRS data. For additional information, please contact <u>CBRA@fws.gov</u>.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

There are no refuge lands at this location.

Fish hatcheries

There are no fish hatcheries at this location.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of</u> <u>Engineers District</u>.

Wetland information is not available at this time

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the <u>NWI map</u> to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should

8/30/22, ACHMENT A

IPaC: Explore Location resources

seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

NOTFORCONSULTATIO

https://ipac.ecosphere.fws.gov/location/JEQKS7TOI5DZ7ER2HFT4WPHE6Y/resources

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Local office

Florida Ecological Services Field Office

✓ <u>fw4flesregs@fws.gov</u>

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

 Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ). 8/30/22, TACHMENT A

2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME	STATUS
Florida Bonneted Bat Eumops floridanus Wherever found There is proposed critical habitat for this species. The location of the critical habitat is not available. https://ecos.fws.gov/ecp/species/8630	Endangered
Florida Panther Puma (=Felis) concolor coryi Wherever found No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/1763</u>	Endangered
Puma (=mountain Lion) Puma (=Felis) concolor (all subsp. except coryi) No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/6049	SAT
West Indian Manatee Trichechus manatus Wherever found There is final critical habitat for this species. The location of the critical habitat is not available. https://ecos.fws.gov/ecp/species/4469	Threatened Marine mammal
Birds	
NAME	STATUS
Audubon's Crested Caracara Polyborus plancus audubonii No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/8250</u>	Threatened
Eastern Black Rail Laterallus jamaicensis ssp. jamaicensis Wherever found No critical habitat has been designated for this species. <u>https://ecos.fws.gov/ecp/species/10477</u>	Threatened

8/30/22, ASCHMENT A

Piping Plover Charadrius melodus There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/6039</u>	Threatened
Red Knot Calidris canutus rufa Wherever found There is proposed critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/1864</u>	Threatened
Wood Stork Mycteria americana No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/8477	Threatened
Reptiles NAME	STATUS
American Alligator Alligator mississippiensis Wherever found No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/776	SAT
American Crocodile Crocodylus acutus There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/6604</u>	Threatened
Eastern Indigo Snake Drymarchon couperi Wherever found No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/646	Threatened
Green Sea Turtle Chelonia mydas There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/6199</u>	Threatened
Loggerhead Sea Turtle Caretta caretta There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/1110</u>	Threatened

	тлсн	МЕК	ГΤΛ
8/30/22			

STATUS

Fishes NAME

Gulf Sturgeon Acipenser oxyrinchus (=oxyrhynchus) desotoi Threatened Wherever found There is final critical habitat for this species. The location of the critical habitat is not available.

https://ecos.fws.gov/ecp/species/651

Insects

NAME	STATUS
Bartram's Hairstreak Butterfly Strymon acis bartrami Wherever found There is final critical habitat for this species. The location of the critical habitat is not available. <u>https://ecos.fws.gov/ecp/species/4837</u>	Endangered
Florida Leafwing Butterfly Anaea troglodyta floridalis Wherever found There is final critical habitat for this species. The location of the critical habitat is not available. https://ecos.fws.gov/ecp/species/6652	Endangered
Miami Blue Butterfly Cyclargus (=Hemiargus) thomasi bethunebakeri Wherever found No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/3797	Endangered
Flowering Plants	

 NAME
 STATUS

 Florida Prairie-clover Dalea carthagenensis floridana
 Endangered

 No critical habitat has been designated for this species.
 https://ecos.fws.gov/ecp/species/2300

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

There are no critical habitats at this location.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern https://www.fws.gov/program/migratory-birds/species
- Measures for avoiding and minimizing impacts to birds <u>https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds</u>
- Nationwide conservation measures for birds <u>https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the USFWS Birds of Conservation Concern (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON

8/30/22, ASCHMENT A

American Kestrel Falco sparverius paulus This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <u>https://ecos.fws.gov/ecp/species/9587</u>	Breeds Apr 1 to Aug 31
American Oystercatcher Haematopus palliatus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/8935</u>	Breeds Apr 15 to Aug 31
Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1626	Breeds Sep 1 to Jul 31
Black Skimmer Rynchops niger This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/5234</u>	Breeds May 20 to Sep 15
Chimney Swift Chaetura pelagica This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Mar 15 to Aug 25
Great Blue Heron Ardea herodias occidentalis This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds Jan 1 to Dec 31
Gull-billed Tern Gelochelidon nilotica This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9501</u>	Breeds May 1 to Jul 31
Lesser Yellowlegs Tringa flavipes This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9679</u>	Breeds elsewhere

Magnificent Frigatebird Fregata magnificens This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

8/30 22, TACHMENT A

Prairie Warbler Dendroica discolor This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Red-headed Woodpecker Melanerpes erythrocephalus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Reddish Egret Egretta rufescens This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/7617</u>

Ruddy Turnstone Arenaria interpres morinella This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Short-billed Dowitcher Limnodromus griseus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9480</u>

Swallow-tailed Kite Elanoides forficatus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/8938</u>

Willet Tringa semipalmata This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Wilson's Plover Charadrius wilsonia This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Probability of Presence Summary

https://ipac.ecosphere.fws.gov/location/PDDW2U77KFBDXISYCQS64VGI3M/resources

Breeds Oct 1 to Apr 30

Breeds May 1 to Jul 31

Breeds May 10 to Sep 10

Breeds Mar 1 to Sep 15

Breeds elsewhere

Breeds elsewhere

Breeds Mar 10 to Jun 30

Breeds Apr 20 to Aug 5

Breeds Apr 1 to Aug 20

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort ()

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (–)

8/30/22, ACHMENT A

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

			■ pr	obabilit	y of pre	sence	breed	ding sea	son l	survey et	ffort –	no data
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
American Kestrel BCC - BCR		┼║╪║	###+	++++	++++	++1+	++++	++++	++++	+	Ⅲ ┼┼♥	
American Oystercatcher BCC Rangewide (CON)	# +##	+++++	++ #+	+++#		1111	++++	++++	++++	++	#+++ (++#+
Bald Eagle Non-BCC Vulnerable	1011	1111	4111		44 ++	++++	1+++	+	-	and a	1111	1111
Black Skimmer BCC Rangewide (CON)		1111	1111		1011	1111	5	10th	at (1		1111	1111
Chimney Swift BCC Rangewide (CON)	++++	++++	++++	+	11(I	W	1+1+	1 <mark>1</mark> 11	II + I	++++	++++	++++
Great Blue Heron BCC - BCR			4764	4111	Till	1111	1111	IIII	LL I	11[]	III	1011
Gull-billed Tern BCC Rangewide (CON)	++++	++++	++++	++++	 	++1+	1+++	+11++	++++	+11++	++++	+11++
Lesser Yellowlegs BCC Rangewide (CON)	+++#	# + # +	∔ ∎++	+++#	++++	++++	++++	++++	++++	++11+	+#+#	Ⅲ +++
Magnificent Frigatebird BCC - BCR	1111	1111		1111		1111			* ++	1111	1111	1111
Prairie Warbler BCC Rangewide (CON)	++==	+===	***		111	+111	1++1	I ++ I		IIII	+	++##
Red-headed Woodpecker BCC Rangewide (CON)		++++	++++	++++	++++	++++	++++	++++	<mark>+</mark> +∎+	++++	++++	++++

8/30/22, ACHMEN	NT A IPaC: Explore Location resources											
Reddish Egret BCC Rangewide (CON)	#I##	# + # +	ŧ∎ ∎∔	┼║┼╡	┼∎∎∔	111+	1++1	111	++++	+ [] + []		
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Ruddy Turnstone BCC - BCR			1111			.	++11					Ш
Short-billed Dowitcher BCC Rangewide (CON)		+#+#	++++	++++	++++	++++	+++1	++++	+∎∎+		+∎∎∎	++++
Swallow-tailed Kite BCC Rangewide (CON)	++++	┼┼┼║	++++	***	 	++#1	++ ∎+	1 +++	++++	++++	++++	++++
Willet BCC Rangewide (CON)	IIII	IIII	IIII	III II	0010	UT+T	1717	ITTE	IIII	UH	NUL	1111
Wilson's Plover BCC Rangewide (CON)		+#+#	# +++	1111	HI	111(1111	++++	++++	++++	+++#	+11++

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the list of migratory birds that potentially occur in my specified location?

The Migratory Bird Resource List is comprised of USFWS Birds of Conservation Concern (BCC) and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the Avian Knowledge Network (AKN). The AKN data is based on a growing collection of survey, banding, and citizen science datasets and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (Eagle Act requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the Rapid Avian Information Locator (RAIL) Tool.

8/30 22 ASCHMENT A

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and</u> <u>citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering or migrating in my area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may query your location using the <u>RAIL Tool</u> and look at the range maps provided for birds in your area at the bottom of the profiles provided for each bird in your results. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data</u> <u>Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird</u> <u>Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact

<u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability" of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page. NOTFOR

Marine mammals

Marine mammals are protected under the <u>Marine Mammal Protection Act</u>. Some are also protected under the Endangered Species Act¹ and the Convention on International Trade in Endangered Species of Wild Fauna and Flora².

The responsibilities for the protection, conservation, and management of marine mammals are shared by the U.S. Fish and Wildlife Service [responsible for otters, walruses, polar bears, manatees, and dugongs] and NOAA Fisheries³ [responsible for seals, sea lions, whales, dolphins, and porpoises]. Marine mammals under the responsibility of NOAA Fisheries are **not** shown on this list; for additional information on those species please visit the <u>Marine</u> <u>Mammals</u> page of the NOAA Fisheries website.

The Marine Mammal Protection Act prohibits the take (to harass, hunt, capture, kill, or attempt to harass, hunt, capture or kill) of marine mammals and further coordination may be necessary for project evaluation. Please contact the U.S. Fish and Wildlife Service Field Office shown.

- 1. The Endangered Species Act (ESA) of 1973.
- The <u>Convention on International Trade in Endangered Species of Wild Fauna and Flora</u> (CITES) is a treaty to ensure that international trade in plants and animals does not threaten their survival in the wild.
- 3. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following marine mammals under the responsibility of the U.S. Fish and Wildlife Service are potentially affected by activities in this location:

NAME

West Indian Manatee Trichechus manatus https://ecos.fws.gov/ecp/species/4469

Coastal Barrier Resources System

Projects within the John H. Chafee Coastal Barrier Resources System (CBRS) may be subject to the restrictions on federal expenditures and financial assistance and the consultation requirements of the Coastal Barrier Resources Act (CBRA) (16 U.S.C. 3501 et seq.). For more information, please contact the local <u>Ecological Services Field Office</u> or visit the <u>CBRA</u> 8/30/22, TACHMENT A

<u>Consultations website</u>. The CBRA website provides tools such as a flow chart to help determine whether consultation is required and a template to facilitate the consultation process.

There are no known coastal barriers at this location.

Data limitations

The CBRS boundaries used in IPaC are representations of the controlling boundaries, which are depicted on the <u>official CBRS maps</u>. The boundaries depicted in this layer are not to be considered authoritative for in/out determinations close to a CBRS boundary (i.e., within the "CBRS Buffer Zone" that appears as a hatched area on either side of the boundary). For projects that are very close to a CBRS boundary but do not clearly intersect a unit, you may contact the Service for an official determination by following the instructions here: <u>https://www.fws.gov/service/coastal-barrier-resources-system-property-documentation</u>

Data exclusions

CBRS units extend seaward out to either the 20- or 30-foot bathymetric contour (depending on the location of the unit). The true seaward extent of the units is not shown in the CBRS data, therefore projects in the offshore areas of units (e.g., dredging, breakwaters, offshore wind energy or oil and gas projects) may be subject to CBRA even if they do not intersect the CBRS data. For additional information, please contact <u>CBRA@fws.gov</u>.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

There are no refuge lands at this location.

Fish hatcheries

There are no fish hatcheries at this location.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of</u> <u>Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

This location overlaps the following wetlands:

FRESHWATER POND Palustrine

A full description for each wetland code can be found at the <u>National Wetlands Inventory</u> <u>website</u>

NOTE: This initial screening does **not** replace an on-site delineation to determine whether wetlands occur. Additional information on the NWI data is provided below.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

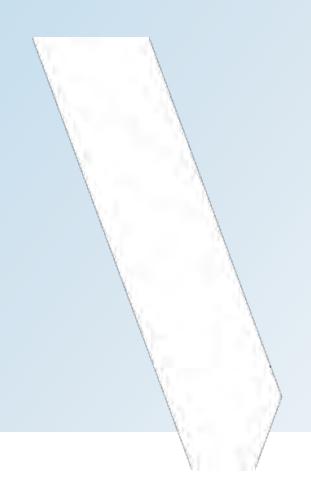
The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions


Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

OTFORCONSULTATIO

ATTACHMENT A

Pace Analytical Services, LLC 3610 Park Central Blvd N Pompano Beach, FL 33064 (954)582-4300

December 08, 2022

Greg Corning WSP USA Environment & Infrastructure Inc. 5845 NW 158th Street Hialeah, FL 33014

RE: Project: City of Naples Lake Restoratio Pace Project No.: 35760275

Dear Greg Corning:

Enclosed are the analytical results for sample(s) received by the laboratory on November 16, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Ormond Beach

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

estoras

Neshmah Castaneda neshmah.castaneda@pacelabs.com (386)672-5668 Project Manager

Enclosures

cc: Ash Aitharaju, WSP USA Environment & Infrastructure Inc.

Pace Analytical Services, LLC 3610 Park Central Blvd N Pompano Beach, FL 33064 (954)582-4300

CERTIFICATIONS

Project: City of Naples Lake Restoratio Pace Project No.: 35760275

Pace Analytical Services Ormond Beach

8 East Tower Circle, Ormond Beach, FL 32174 Alaska DEC- CS/UST/LUST Alabama Certification #: 41320 Colorado Certification: FL NELAC Reciprocity Connecticut Certification #: PH-0216 Delaware Certification: FL NELAC Reciprocity Florida Certification #: E83079 Georgia Certification #: 955 Guam Certification: FL NELAC Reciprocity Hawaii Certification: FL NELAC Reciprocity Illinois Certification #: 200068 Indiana Certification: FL NELAC Reciprocity Kansas Certification #: E-10383 Kentucky Certification #: 90050 Louisiana Certification #: FL NELAC Reciprocity Louisiana Environmental Certificate #: 05007 Maine Certification #: FL01264 Maryland Certification: #346 Massachusetts Certification #: M-FL1264 Michigan Certification #: 9911 Mississippi Certification: FL NELAC Reciprocity

Missouri Certification #: 236 Montana Certification #: Cert 0074 Nebraska Certification: NE-OS-28-14 New Hampshire Certification #: 2958 New Jersey Certification #: FL022 New York Certification #: 11608 North Carolina Environmental Certificate #: 667 North Carolina Certification #: 12710 North Dakota Certification #: R-216 Ohio DEP 87780 Oklahoma Certification #: D9947 Pennsylvania Certification #: 68-00547 Puerto Rico Certification #: FL01264 South Carolina Certification: #96042001 Tennessee Certification #: TN02974 Texas Certification: FL NELAC Reciprocity US Virgin Islands Certification: FL NELAC Reciprocity Virginia Environmental Certification #: 460165 West Virginia Certification #: 9962C Wisconsin Certification #: 399079670 Wyoming (EPA Region 8): FL NELAC Reciprocity

SAMPLE SUMMARY

Project:City of Naples Lake RestoratioPace Project No.:35760275

Lab ID	Sample ID	Matrix	Date Collected	Date Received
35760275001	LAKE 9 Comp 134	Solid	11/14/22 09:10	11/16/22 15:00
35760275002	LAKE 9 Comp 256	Solid	11/14/22 10:00	11/16/22 15:00
35760275003	LAKE 9 Comp 8 11 12 14	Solid	11/14/22 11:00	11/16/22 15:00
35760275004	LAKE 9 Comp 17 18 20 21	Solid	11/14/22 13:05	11/16/22 15:00
35760275005	LAKE 9 Comp 15 16 19 22	Solid	11/14/22 14:20	11/16/22 15:00
35760275006	LAKE 9 Comp 7 9 10 13	Solid	11/14/22 15:20	11/16/22 15:00
35760275007	LAKE 8 Comp 137	Solid	11/15/22 09:20	11/16/22 15:00
35760275008	LAKE 8 Comp 248	Solid	11/15/22 10:15	11/16/22 15:00
35760275009	LAKE 8 Comp 659	Solid	11/15/22 11:45	11/16/22 15:00

SAMPLE ANALYTE COUNT

Project:	City of Naples Lake Restoratio
Pace Project No.:	35760275

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
35760275001	LAKE 9 Comp 134	FL-PRO		3	PASI-O
		EPA 6010	KPP	8	PASI-O
		EPA 6010	AME	8	PASI-O
		EPA 7470	JNK	1	PASI-O
		EPA 7471	JNK	1	PASI-O
		EPA 8270	TWB	21	PASI-O
		ASTM D2974-87	BMA	1	PASI-O
		TKN+NOx Calculation	NMT	1	PASI-O
		EPA 351.2	CLL	1	PASI-O
		EPA 353.2	KW1	1	PASI-O
		EPA 365.4	CLL	1	PASI-O
35760275002	LAKE 9 Comp 256	FL-PRO	NCB1	3	PASI-O
		EPA 6010	KPP	8	PASI-O
		EPA 6010	AME	8	PASI-O
		EPA 7470	JNK	1	PASI-O
		EPA 7471	JNK	1	PASI-O
		EPA 8270	TWB	21	PASI-O
		ASTM D2974-87	BMA	1	PASI-O
		TKN+NOx Calculation	NMT	1	PASI-O
		EPA 351.2	CLL	1	PASI-O
		EPA 353.2	KW1	1	PASI-O
		EPA 365.4	CLL	1	PASI-O
35760275003	LAKE 9 Comp 8 11 12 14	FL-PRO	NCB1	3	PASI-O
		EPA 6010	KPP	8	PASI-O
		EPA 6010	AME	8	PASI-O
		EPA 7470	JNK	1	PASI-O
		EPA 7471	JNK	1	PASI-O
		EPA 8270	TWB	21	PASI-O
		ASTM D2974-87	BMA	1	PASI-O
		TKN+NOx Calculation	NMT	1	PASI-O
		EPA 351.2	CLL	1	PASI-O
		EPA 353.2	KW1	1	PASI-O
		EPA 365.4	CLL	1	PASI-O
35760275004	LAKE 9 Comp 17 18 20 21	FL-PRO	NCB1	3	PASI-O
		EPA 6010	KPP	8	PASI-O
		EPA 6010	AME	8	PASI-O
		EPA 7470	JNK	1	PASI-O

SAMPLE ANALYTE COUNT

Project:	City of Naples Lake Restoratio
----------	--------------------------------

Pace Project No.: 35760275

Analytes Method Reported Lab ID Sample ID Analysts Laboratory EPA 7471 JNK 1 PASI-O TWB 21 EPA 8270 PASI-O ASTM D2974-87 BMA 1 PASI-O **TKN+NOx Calculation** NMT PASI-O 1 EPA 351.2 CLL PASI-O 1 EPA 353.2 KW1 1 PASI-O CLL EPA 365.4 1 PASI-O 35760275005 LAKE 9 Comp 15 16 19 22 FL-PRO NCB1 3 PASI-O KPP 8 EPA 6010 PASI-O EPA 6010 PASI-O AME 8 EPA 7470 JNK 1 PASI-O EPA 7471 JNK PASI-O 1 EPA 8270 TWB 21 PASI-O ASTM D2974-87 BMA 1 PASI-O **TKN+NOx Calculation** NMT 1 PASI-O EPA 351.2 CLL 1 PASI-O EPA 353.2 KW1 1 PASI-O EPA 365.4 CLL PASI-O 1 35760275006 LAKE 9 Comp 7 9 10 13 FL-PRO NCB1 3 PASI-O EPA 6010 KPP 8 PASI-O EPA 6010 AME 8 PASI-O EPA 7470 JNK 1 PASI-O EPA 7471 JNK PASI-O 1 TWB 21 EPA 8270 PASI-O ASTM D2974-87 BMA 1 PASI-O **TKN+NOx Calculation** NMT PASI-O 1 EPA 351.2 CLL 1 PASI-O EPA 353.2 KW1 PASI-O 1 EPA 365.4 CLL PASI-O 1 FL-PRO 35760275007 LAKE 8 Comp 137 NCB1 3 PASI-O KPP EPA 6010 8 PASI-O EPA 6010 AME 8 PASI-O EPA 7470 JNK 1 PASI-O EPA 7471 JNK PASI-O 1 EPA 8270 TWB 21 PASI-O ASTM D2974-87 BMA 1 PASI-O NMT PASI-O **TKN+NOx Calculation** 1

SAMPLE ANALYTE COUNT

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 351.2	CLL	1	PASI-O
		EPA 353.2	KW1	1	PASI-O
		EPA 365.4	CLL	1	PASI-O
35760275008	LAKE 8 Comp 248	FL-PRO	NCB1	3	PASI-O
		EPA 6010	KPP	8	PASI-O
		EPA 6010	AME	8	PASI-O
		EPA 7470	JNK	1	PASI-O
		EPA 7471	JNK	1	PASI-O
		EPA 8270	TWB	21	PASI-O
		ASTM D2974-87	BMA	1	PASI-O
		TKN+NOx Calculation	NMT	1	PASI-O
		EPA 351.2	CLL	1	PASI-O
		EPA 353.2	KW1	1	PASI-O
		EPA 365.4	CLL	1	PASI-O
35760275009	LAKE 8 Comp 659	FL-PRO	NCB1	3	PASI-O
		EPA 6010	KPP	8	PASI-O
		EPA 6010	AME	8	PASI-O
		EPA 7470	JNK	1	PASI-O
		EPA 7471	JNK	1	PASI-O
		EPA 8270	TWB	21	PASI-O
		ASTM D2974-87	BMA	1	PASI-O
		TKN+NOx Calculation	NMT	1	PASI-O
		EPA 351.2	CLL	1	PASI-O
		EPA 353.2	KW1	1	PASI-O
		EPA 365.4	CLL	1	PASI-O

PASI-O = Pace Analytical Services - Ormond Beach

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Lab Sample ID Client Sample ID Method Parameters Qualifiers Result Units Report Limit Analyzed 35760275001 LAKE 9 Comp 134 FL-PRO Petroleum Range Organics 65.2 mg/kg 17.9 11/19/22 02:31 P1 EPA 6010 Arsenic 5.2 mg/kg 88.0 11/22/22 21:49 EPA 6010 Barium 1.3 0.88 11/22/22 21:49 mg/kg EPA 6010 Cadmium 0.30 mg/kg 0.088 11/22/22 21:49 mg/kg EPA 6010 Chromium 2.6 0.44 11/22/22 21:49 11/23/22 00:52 EPA 6010 Copper 114 mg/kg 44 J(M1), J(R1) EPA 6010 Lead 2.8 0.88 11/22/22 21.49 mg/kg EPA 6010 Barium 0.011 I mg/L 0.10 11/22/22 04:35 EPA 7470 0.00090 I 0.0020 11/22/22 09:42 Mercury mg/L EPA 7471 Mercury 0.022 mg/kg 0.017 11/21/22 11:16 EPA 8270 Benzo(a)anthracene 0.15 I mg/kg 0.33 11/18/22 13:42 P1 EPA 8270 Benzo(a)pyrene 0.31 I mg/kg 0.33 11/18/22 13:42 P1 EPA 8270 Benzo(b)fluoranthene 0.43 0.33 11/18/22 13:42 P1 mg/kg EPA 8270 Benzo(g,h,i)perylene 0.22 I mg/kg 0.33 11/18/22 13:42 P1 EPA 8270 Benzo(k)fluoranthene 0.15 I mg/kg 0.33 11/18/22 13:42 P1 EPA 8270 Chrysene 0.16 I 0.33 11/18/22 13:42 P1 mg/kg EPA 8270 Fluoranthene 0.27 I 0.33 11/18/22 13:42 P1 mg/kg P1 EPA 8270 Indeno(1,2,3-cd)pyrene 0.18 I 0.33 11/18/22 13:42 mg/kg Pyrene P1 EPA 8270 0.36 0.33 11/18/22 13:42 mg/kg ASTM D2974-87 45.4 11/17/22 08:52 Percent Moisture % 0.10 **TKN+NOx Calculation Total Nitrogen Soil** 983 mg/kg 36.7 12/05/22 15:17 EPA 351.2 Nitrogen, Kjeldahl, Total 983 mg/kg 183 11/25/22 14:35 EPA 365.4 Phosphorus, Total (as P) 59.4 mg/kg 55.0 11/25/22 14:35 35760275002 LAKE 9 Comp 256 FL-PRO Petroleum Range Organics 44.5 mg/kg 22.1 11/19/22 05:23 P1 EPA 6010 Arsenic 10.6 mg/kg 1.2 11/22/22 22:07 EPA 6010 Barium 11/22/22 22:07 2.1 mg/kg 1.2 EPA 6010 Cadmium 0.26 11/22/22 22:07 mg/kg 0.12 EPA 6010 Chromium 4.5 mg/kg 0.60 11/22/22 22:07 EPA 6010 Copper 245 mg/kg 6.0 11/23/22 00:55 4.3 11/22/22 22:07 FPA 6010 I ead mg/kg 1.2 Arsenic 0.098 I 0.10 11/22/22 05:42 EPA 6010 mg/L 0.018 I 0.10 11/22/22 05:42 EPA 6010 Barium mg/L 0.022 EPA 7471 0.042 11/21/22 11:18 Mercurv mg/kg ASTM D2974-87 Percent Moisture 55.3 % 0.10 11/17/22 08:52 **TKN+NOx Calculation Total Nitrogen Soil** 2500 mg/kg 44.7 12/05/22 15:17 EPA 351.2 Nitrogen, Kjeldahl, Total 2500 223 11/25/22 14:39 mg/kg EPA 365.4 Phosphorus, Total (as P) 146 mg/kg 66.9 11/25/22 14:39 35760275003 LAKE 9 Comp 8 11 12 14 FL-PRO 49.7 Petroleum Range Organics mg/kg 31.5 11/19/22 02:47 P1 EPA 6010 Arsenic 9.2 1.7 11/22/22 22:10 mg/kg 11/22/22 22:10 EPA 6010 Barium 1.9 mg/kg 1.7 EPA 6010 Cadmium 0.37 mg/kg 0.17 11/22/22 22:10 EPA 6010 Chromium 6.1 0.86 11/22/22 22:10 mg/kg EPA 6010 Copper 172 mg/kg 8.6 11/23/22 00:58 EPA 6010 Lead 8.1 mg/kg 1.7 11/22/22 22:10

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
35760275003	LAKE 9 Comp 8 11 12 14				·	
EPA 6010	Arsenic	0.042 I	mg/L	0.10	11/22/22 05:45	
EPA 6010	Barium	0.013 I	mg/L	0.10	11/22/22 05:45	
EPA 7471	Mercury	0.068	mg/kg	0.031	11/21/22 11:20	
ASTM D2974-87	Percent Moisture	68.9	%	0.10	11/17/22 08:52	
TKN+NOx Calculation	Total Nitrogen Soil	769	mg/kg	64.3	12/05/22 15:17	
EPA 351.2	Nitrogen, Kjeldahl, Total	769	mg/kg	321	11/25/22 14:40	
35760275004	LAKE 9 Comp 17 18 20 21					
EPA 6010	Arsenic	14.5	mg/kg	1.4	11/22/22 22:13	
EPA 6010	Barium	1.5	mg/kg	1.4	11/22/22 22:13	
EPA 6010	Cadmium	0.28	mg/kg	0.14	11/22/22 22:13	
EPA 6010	Chromium	6.6	mg/kg	0.69	11/22/22 22:13	
EPA 6010	Copper	345	mg/kg	6.9	11/23/22 01:07	
EPA 6010	Lead	5.2	mg/kg	1.4	11/22/22 22:13	
EPA 6010	Arsenic	0.10	mg/L	0.10	11/22/22 05:48	
EPA 6010	Barium	0.013 I	mg/L	0.10	11/22/22 05:48	
EPA 7470	Mercury	0.0010 I	mg/L	0.0020	11/22/22 10:03	
EPA 7471	Mercury	0.043	mg/kg	0.027	11/21/22 11:27	
ASTM D2974-87	Percent Moisture	63.6	%	0.10	11/17/22 08:53	
TKN+NOx Calculation	Total Nitrogen Soil	1210	mg/kg	54.9	12/05/22 15:17	
EPA 351.2	Nitrogen, Kjeldahl, Total	1210	mg/kg	273	11/25/22 14:43	
EPA 365.4	Phosphorus, Total (as P)	76.6 I	mg/kg	82.0	11/25/22 14:43	
35760275005	LAKE 9 Comp 15 16 19 22		5.5			
EPA 6010	Arsenic	15.6	mg/kg	1.5	11/22/22 22:16	
EPA 6010	Barium	1.9	mg/kg	1.5	11/22/22 22:16	
EPA 6010	Cadmium	0.086 I	mg/kg	0.15	11/22/22 22:16	
EPA 6010	Chromium	4.0	mg/kg	0.74	11/22/22 22:16	
EPA 6010	Copper	51.8	mg/kg	0.74	11/22/22 22:16	
EPA 6010	Lead	4.2	mg/kg	1.5	11/22/22 22:16	
EPA 6010	Arsenic	0.051 I	mg/L	0.10	11/22/22 05:51	
EPA 6010	Barium	0.011 I	mg/L	0.10	11/22/22 05:51	
EPA 7470	Mercury	0.00090 I	mg/L	0.0020	11/22/22 10:05	
EPA 7471	Mercury	0.034	mg/kg	0.022	11/21/22 11:30	
EPA 8270	Benzo(b)fluoranthene	0.16 I	mg/kg	0.46	11/18/22 15:28	P1
ASTM D2974-87	Percent Moisture	59.4	%	0.10	11/17/22 11:36	
TKN+NOx Calculation	Total Nitrogen Soil	2210	mg/kg		12/05/22 15:17	
EPA 351.2	Nitrogen, Kjeldahl, Total	2210	mg/kg		11/25/22 14:44	
EPA 353.2	Nitrogen, NO2 plus NO3	1.5	mg/kg		11/19/22 22:07	
EPA 365.4	Phosphorus, Total (as P)	69.5 I	mg/kg	73.7		
35760275006	LAKE 9 Comp 7 9 10 13					
EPA 6010	Arsenic	0.49 I	mg/kg	0.63	11/22/22 22:19	
EPA 6010	Barium	0.19 I	mg/kg	0.63	11/22/22 22:19	
EPA 6010	Chromium	0.30 1	mg/kg		11/22/22 22:19	
EPA 6010	Copper	3.0	mg/kg		11/22/22 22:19	
EPA 6010	Lead	0.43 I	mg/kg	0.63	11/22/22 22:19	
EPA 7470	Mercury	0.00090 1	mg/L	0.0020	11/22/22 10:07	
EPA 7471	Mercury	0.0092 1	mg/kg		11/21/22 11:32	
	morodry	0.0002 1	iiig/itg	0.012	· 1/2 1/22 11.02	

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Lab Sample ID Client Sample ID Method Parameters Qualifiers Result Units Report Limit Analyzed 35760275006 LAKE 9 Comp 7 9 10 13 EPA 8270 Benzo(a)anthracene 0.041 I mg/kg 0.18 11/18/22 15:54 P1 EPA 8270 Benzo(a)pyrene 0.074 I mg/kg 0.18 11/18/22 15:54 P1 EPA 8270 Benzo(b)fluoranthene 0.11 I 0.18 11/18/22 15:54 P1 mg/kg EPA 8270 Benzo(g,h,i)perylene 0.057 I mg/kg 0.18 11/18/22 15:54 P1 EPA 8270 Chrysene 0.035 I mg/kg 0.18 11/18/22 15:54 P1 0.046 I EPA 8270 Indeno(1,2,3-cd)pyrene mg/kg 0.18 11/18/22 15:54 P1 EPA 8270 Pyrene 0.073 I 0.18 11/18/22 15:54 P1 mg/kg 11/17/22 11:36 ASTM D2974-87 Percent Moisture 235 % 0.10 **TKN+NOx Calculation Total Nitrogen Soil** 148 12/05/22 15:17 mg/kg 26.1 EPA 351.2 Nitrogen, Kjeldahl, Total 148 mg/kg 130 11/25/22 14:45 35760275007 LAKE 8 Comp 137 EPA 6010 Arsenic 16.4 11/22/22 22:22 mg/kg 1.3 EPA 6010 Barium 1.5 mg/kg 1.3 11/22/22 22:22 0.17 EPA 6010 Cadmium mg/kg 0.13 11/22/22 22:22 EPA 6010 Chromium 5.1 mg/kg 0.66 11/22/22 22:22 EPA 6010 Copper 44.3 0.66 11/22/22 22:22 mg/kg EPA 6010 Lead 28.9 mg/kg 1.3 11/22/22 22:22 EPA 6010 Arsenic 0.11 mg/L 0.10 11/22/22 05:58 EPA 6010 Barium 0.0089 I mg/L 0.10 11/22/22 05:58 EPA 7471 0.074 11/21/22 11:34 Mercury mg/kg 0.022 EPA 8270 Benzo(a)pyrene 0.23 I 0.34 11/18/22 16:20 P1 mg/kg EPA 8270 Benzo(b)fluoranthene 0.28 I mg/kg 0.34 11/18/22 16:20 P1 P1 EPA 8270 Benzo(g,h,i)perylene 0.19 I mg/kg 0.34 11/18/22 16:20 Benzo(k)fluoranthene 0.12 I P1 EPA 8270 mg/kg 0.34 11/18/22 16:20 EPA 8270 Chrysene 0.047 I mg/kg 0.34 11/18/22 16:20 P1 EPA 8270 Indeno(1,2,3-cd)pyrene 0.16 I mg/kg 0.34 11/18/22 16:20 P1 ASTM D2974-87 0.10 11/17/22 11:37 Percent Moisture 55.3 % TKN+NOx Calculation 1930 12/05/22 15:17 **Total Nitrogen Soil** mg/kg 44.7 EPA 351.2 Nitrogen, Kjeldahl, Total 1930 mg/kg 222 11/25/22 14:46 EPA 365.4 Phosphorus, Total (as P) 106 mg/kg 66.5 11/25/22 14:46 35760275008 LAKE 8 Comp 248 EPA 6010 11/22/22 22:26 Arsenic 4.2 mg/kg 0.78 EPA 6010 Barium 0.58 I 0.78 11/22/22 22:26 mg/kg EPA 6010 Cadmium 0.058 I 0.078 11/22/22 22:26 mg/kg EPA 6010 Chromium 11/22/22 22:26 1.8 mg/kg 0.39 EPA 6010 24.2 11/22/22 22:26 Copper 0.39 mg/kg EPA 6010 Lead 10.2 11/22/22 22:26 mg/kg 0.78 EPA 6010 Arsenic 0.042 I mg/L 0.10 11/22/22 06:01 0.0098 I EPA 6010 Barium mg/L 0.10 11/22/22 06:01 EPA 7471 Mercury 0.020 mg/kg 0.014 11/21/22 11:36 ASTM D2974-87 Percent Moisture 33.6 0.10 11/17/22 11:37 % 675 12/05/22 15:17 **TKN+NOx Calculation Total Nitrogen Soil** mg/kg 30.1 EPA 351.2 Nitrogen, Kjeldahl, Total 675 mg/kg 150 11/25/22 14:47 EPA 365.4 Phosphorus, Total (as P) 43.3 I 45.1 11/25/22 14:47 mg/kg 35760275009 LAKE 8 Comp 659 FL-PRO Petroleum Range Organics 11/19/22 03:34 59.2 mg/kg 13.6 P1

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
35760275009	LAKE 8 Comp 659					
EPA 6010	Arsenic	4.1	mg/kg	0.76	11/22/22 22:41	
EPA 6010	Barium	2.2	mg/kg	0.76	11/22/22 22:41	
EPA 6010	Cadmium	0.11	mg/kg	0.076	11/22/22 22:41	
EPA 6010	Chromium	4.6	mg/kg	0.38	11/22/22 22:41	
EPA 6010	Copper	26.8	mg/kg	0.38	11/22/22 22:41	
EPA 6010	Lead	37.2	mg/kg	0.76	11/22/22 22:41	
EPA 6010	Selenium	1.5	mg/kg	1.1	11/22/22 22:41	
EPA 6010	Barium	0.029 I	mg/L	0.10	11/22/22 06:04	
EPA 7471	Mercury	0.021	mg/kg	0.014	11/21/22 11:39	
EPA 8270	Benzo(a)anthracene	0.063 I	mg/kg	0.16	11/18/22 17:12	P1
EPA 8270	Benzo(a)pyrene	0.067 I	mg/kg	0.16	11/18/22 17:12	P1
EPA 8270	Benzo(b)fluoranthene	0.10 I	mg/kg	0.16	11/18/22 17:12	P1
EPA 8270	Benzo(g,h,i)perylene	0.049 I	mg/kg	0.16	11/18/22 17:12	P1
EPA 8270	Chrysene	0.074 l	mg/kg	0.16	11/18/22 17:12	P1
EPA 8270	Fluoranthene	0.13 I	mg/kg	0.16	11/18/22 17:12	P1
EPA 8270	Indeno(1,2,3-cd)pyrene	0.039 I	mg/kg	0.16	11/18/22 17:12	P1
EPA 8270	Pyrene	0.094 I	mg/kg	0.16	11/18/22 17:12	P1
ASTM D2974-87	Percent Moisture	27.9	%	0.10	11/17/22 11:37	
TKN+NOx Calculation	Total Nitrogen Soil	755	mg/kg	27.7	12/05/22 15:17	
EPA 351.2	Nitrogen, Kjeldahl, Total	755	mg/kg	138	11/25/22 14:49	
EPA 365.4	Phosphorus, Total (as P)	140	mg/kg	41.5	11/25/22 14:49	

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 9 Comp 134	Lab ID:	35760275001	Collecte	d: 11/14/22	2 09:10	Received: 11/	/16/22 15:00 M	atrix: Solid	
Results reported on a "dry weight"	" basis and are	adjusted for	percent m	oisture, sa	mple si	ze and any dilut	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analvtical	Method: FL-PI	RO Prepara	ation Metho	d: EPA :	3546	_		
		vtical Services	•						
Petroleum Range Organics	65.2	mg/kg	17.9	15.4	1	11/17/22 10.23	11/19/22 02:31		P1
Surrogates	05.2	iiig/kg	17.5	13.4	1	11/17/22 10.25	11/19/22 02.51		
o-Terphenyl (S)	88	%	66-136		1	11/17/22 10:23	11/19/22 02:31	84-15-1	
N-Pentatriacontane (S)	102	%	42-159		1	11/17/22 10:23	11/19/22 02:31	630-07-09	
6010 MET ICP	Analytical	Method: EPA	6010 Prepa	ration Meth	od. Eb	3050			
	-	vtical Services			0u. El /				
A .		•						7440.00.0	
Arsenic	5.2	mg/kg	0.88	0.44	1	11/22/22 14:46	11/22/22 21:49		
Barium	1.3	mg/kg	0.88	0.15	1	11/22/22 14:46	11/22/22 21:49		
Cadmium	0.30	mg/kg	0.088	0.044	1	11/22/22 14:46	11/22/22 21:49		
Chromium	2.6	mg/kg	0.44	0.22	1	11/22/22 14:46	11/22/22 21:49		1/1.4.4.)
Copper	114	mg/kg	4.4	2.2	10	11/22/22 14:46	11/23/22 00:52	7440-50-8	J(M1), J(R1)
Lead	2.8	mg/kg	0.88	0.44	1	11/22/22 14:46	11/22/22 21:49	7439-92-1	0(1(1)
Selenium	0.66 U	mg/kg	1.3	0.66	1	11/22/22 14:46	11/22/22 21:49		
Silver	0.097 U	mg/kg	0.44	0.097	1	11/22/22 14:46	11/22/22 21:49		
						0040			
6010 MET ICP, TCLP		Method: EPA	•			4 3010			
		Method/Date:	-		30				
	Pace Anal	ytical Services	s - Ormond E	Beach					
Arsenic	0.034 U	mg/L	0.10	0.034	1	11/21/22 11:54	11/22/22 04:35	7440-38-2	
Barium	0.011 I	mg/L	0.10	0.0084	1	11/21/22 11:54	11/22/22 04:35	7440-39-3	
Cadmium	0.0033 U	mg/L	0.010	0.0033	1	11/21/22 11:54	11/22/22 04:35	7440-43-9	
Chromium	0.017 U	mg/L	0.050	0.017	1	11/21/22 11:54	11/22/22 04:35	7440-47-3	
Copper	0.026 U	mg/L	0.050	0.026	1	11/21/22 11:54	11/22/22 04:35	7440-50-8	
Lead	0.021 U	mg/L	0.10	0.021	1	11/21/22 11:54	11/22/22 04:35	7439-92-1	
Selenium	0.039 U	mg/L	0.15	0.039	1	11/21/22 11:54	11/22/22 04:35	7782-49-2	
Silver	0.010 U	mg/L	0.050	0.010	1	11/21/22 11:54	11/22/22 04:35	7440-22-4	
7470 Mercury, TCLP	Leachate	Method: EPA Method/Date: ytical Services	EPA 1311; 1	1/20/22 12:		A 7470			
Mercury	0.00090 I	mg/L	0.0020	0.00090	1	11/21/22 12:13	11/22/22 09:42	7439-97-6	
7471 Mercury	Analytical	Method: EPA	7471 Prepa	ration Meth	od: EP/	A 7471		-	
Moreury	0.022	-	0.017	0.0086	4	11/19/22 00.46	11/01/00 11.46	7420 07 6	
Mercury	0.022	mg/kg	0.017	0.0000	1	11/10/22 09.10	11/21/22 11:16	1403-31-0	
8270 MSSV Short List Microwave	•	Method: EPA 8 ytical Services	•		od: EPA	\ 3546			
Acenaphthene	0.15 U	mg/kg	0.35	0.15	1	11/17/22 17:16	11/18/22 13:42	83-32-9	P1
Acenaphthylene	0.051 U	mg/kg	0.33	0.051	1		11/18/22 13:42		P1
Anthracene	0.044 U	mg/kg	0.35	0.044	1		11/18/22 13:42		P1
Benzo(a)anthracene	0.15	mg/kg	0.33	0.043	1		11/18/22 13:42		P1
			0.00	2.0.0	•				

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

 Sample:
 LAKE 9 Comp 134
 Lab ID:
 35760275001
 Collected:
 11/14/22
 09:10
 Received:
 11/16/22
 15:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepa	ration Meth	od: EP/	A 3546			
	Pace Anal	ytical Service	es - Ormond E	Beach					
Benzo(a)pyrene	0.31 I	mg/kg	0.33	0.081	1	11/17/22 17:16	11/18/22 13:42	50-32-8	P1
Benzo(b)fluoranthene	0.43	mg/kg	0.33	0.086	1	11/17/22 17:16	11/18/22 13:42	205-99-2	P1
Benzo(g,h,i)perylene	0.22	mg/kg	0.33	0.082	1	11/17/22 17:16	11/18/22 13:42	191-24-2	P1
Benzo(k)fluoranthene	0.15 I	mg/kg	0.33	0.086	1	11/17/22 17:16	11/18/22 13:42	207-08-9	P1
Chrysene	0.16 I	mg/kg	0.33	0.043	1	11/17/22 17:16	11/18/22 13:42	218-01-9	P1
Dibenz(a,h)anthracene	0.075 U	mg/kg	0.33	0.075	1	11/17/22 17:16	11/18/22 13:42	53-70-3	P1
Fluoranthene	0.27 I	mg/kg	0.33	0.11	1	11/17/22 17:16	11/18/22 13:42	206-44-0	P1
Fluorene	0.12 U	mg/kg	0.36	0.12	1	11/17/22 17:16	11/18/22 13:42	86-73-7	P1
Indeno(1,2,3-cd)pyrene	0.18 I	mg/kg	0.33	0.074	1	11/17/22 17:16	11/18/22 13:42	193-39-5	P1
1-Methylnaphthalene	0.054 U	mg/kg	0.38	0.054	1	11/17/22 17:16	11/18/22 13:42	90-12-0	P1
2-Methylnaphthalene	0.051 U	mg/kg	0.37	0.051	1	11/17/22 17:16	11/18/22 13:42	91-57-6	P1
Naphthalene	0.12 U	mg/kg	0.34	0.12	1	11/17/22 17:16	11/18/22 13:42	91-20-3	P1
Phenanthrene	0.046 U	mg/kg	0.33	0.046	1	11/17/22 17:16	11/18/22 13:42	85-01-8	P1
Pyrene	0.36	mg/kg	0.33	0.043	1	11/17/22 17:16	11/18/22 13:42	129-00-0	P1
Surrogates		0 0							
Nitrobenzene-d5 (S)	42	%	24-98		1	11/17/22 17:16	11/18/22 13:42	4165-60-0	
2-Fluorobiphenyl (S)	66	%	29-101		1	11/17/22 17:16	11/18/22 13:42	321-60-8	
p-Terphenyl-d14 (S)	78	%	29-112		1	11/17/22 17:16	11/18/22 13:42	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Ormond E	Beach					
Percent Moisture	45.4	%	0.10	0.10	1		11/17/22 08:52		
Total Nitrogen Calculation	Analytical	Method: TKN	I+NOx Calcul	ation					
-	Pace Anal	ytical Service	es - Ormond E	Beach					
Total Nitrogen Soil	983	mg/kg	36.7	20.2	1		12/05/22 15:17		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	ration Meth	nod: EF	A 351.2			
	Pace Anal	ytical Service	es - Ormond E	Beach					
Nitrogen, Kjeldahl, Total	983	mg/kg	183	101	1	11/21/22 10:59	11/25/22 14:35	7727-37-9	
353.2 Nitrogen, NOx	•		353.2 Prepa s - Ormond E		nod: EF	PA 353.2			
Nitrogen, NO2 plus NO3	0.46 U	mg/kg	0.92	0.46	1	11/19/22 20:30	11/19/22 22:01		
365.4 Phosphorus, Total	Analytical	Method: EPA	365.4 Prepa	ration Meth	nod: EF	PA 365.4			
	-		es - Ormond E						
Phosphorus, Total (as P)	59.4	mg/kg	55.0	47.6	1	11/21/22 10:59	11/25/22 14:35	7723-14-0	

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 9 Comp 256	Lab ID:	35760275002	Collecte	ed: 11/14/22	2 10:00	Received: 11/	16/22 15:00 M	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	percent m	oisture, sai	nple si	ze and any dilut	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical	Method: FL-PF	RO Prepara	ation Metho	d: EPA 3	3546			_
	•	ytical Services	•						
Petroleum Range Organics Surrogates	44.5	mg/kg	22.1	19.0	1	11/17/22 10:23	11/19/22 05:23		P1
o-Terphenyl (S)	78	%	66-136		1	11/17/22 10:23	11/19/22 05:23	84-15-1	
N-Pentatriacontane (S)	104	%	42-159		1	11/17/22 10:23	11/19/22 05:23	630-07-09	
6010 MET ICP	Analytical	Method: EPA 6	010 Prepa	aration Meth	od: EPA	3050			
	Pace Anal	ytical Services	- Ormond I	Beach					
Arsenic	10.6	mg/kg	1.2	0.60	1	11/22/22 14:46	11/22/22 22:07	7440-38-2	
Barium	2.1	mg/kg	1.2	0.20	1	11/22/22 14:46	11/22/22 22:07		
Cadmium	0.26	mg/kg	0.12	0.060	1	11/22/22 14:46			
Chromium	4.5	mg/kg	0.60	0.30	1		11/22/22 22:07		
Copper	245	mg/kg	6.0	3.0	10	11/22/22 14:46	11/23/22 00:55		
Lead	4.3	mg/kg	1.2	0.60	1		11/22/22 22:07		
Selenium	0.90 U	mg/kg	1.8	0.90	1	11/22/22 14:46	11/22/22 22:07		
Silver	0.13 U	mg/kg	0.60	0.13	1				
6010 MET ICP, TCLP	Leachate	Method: EPA 6 Method/Date: E ytical Services	EPA 1311; 1	1/20/22 12:		3010			
Arsenic	0.098 I	mg/L	0.10	0.034	1	11/21/22 11:54	11/22/22 05:42	7440-38-2	
Barium	0.018 I	mg/L	0.10	0.0084	1	11/21/22 11:54	11/22/22 05:42		
Cadmium	0.0033 U	mg/L	0.010	0.0033	1	11/21/22 11:54	11/22/22 05:42		
Chromium	0.017 U	mg/L	0.050	0.017	1	11/21/22 11:54	11/22/22 05:42		
Copper	0.026 U	mg/L	0.050	0.026	1	11/21/22 11:54	11/22/22 05:42		
Lead	0.021 U	mg/L	0.10	0.021	1	11/21/22 11:54	11/22/22 05:42		
Selenium	0.039 U	mg/L	0.15	0.039	1	11/21/22 11:54	11/22/22 05:42		
Silver	0.010 U	mg/L	0.050	0.010	1	11/21/22 11:54	11/22/22 05:42		
7470 Mercury, TCLP	Leachate	Method: EPA 7 Method/Date: E ytical Services	EPA 1311; 1	1/20/22 12:		7470			
Mercury	0.00090 U	mg/L	0.0020	0.00090	1	11/21/22 12:13	11/22/22 09:53	7439-97-6	
7471 Mercury	-	Method: EPA 7 ytical Services			od: EPA	7471			
Mercury	0.042	mg/kg	0.022	0.011	1	11/18/22 09:16	11/21/22 11:18	7439-97-6	
8270 MSSV Short List Microwave	-	Method: EPA 8 ytical Services			od: EPA	3546			
Acenaphthene	0.17 U	mg/kg	0.39	0.17	1	11/17/22 17.16	11/18/22 14:09	83-32-9	P1
Acenaphthylene	0.17 U	mg/kg	0.39	0.057	1		11/18/22 14:09		P1
Anthracene	0.057 U 0.050 U	mg/kg	0.37	0.057	1		11/18/22 14:09		P1
								-	P1 P1
Benzo(a)anthracene	0.048 U	mg/kg	0.37	0.048	1	11/17/22 17:16	11/18/22 14:09	00-00-3	FI

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

 Sample:
 LAKE 9 Comp 256
 Lab ID:
 35760275002
 Collected:
 11/14/22
 10:00
 Received:
 11/16/22
 15:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: Solid So

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepa	ration Metho	od: EP/	A 3546			
	Pace Anal	vtical Service	s - Ormond B	Beach					
Benzo(a)pyrene	0.090 U	mg/kg	0.37	0.090	1	11/17/22 17:16	11/18/22 14:09	50-32-8	P1
Benzo(b)fluoranthene	0.097 U	mg/kg	0.37	0.097	1	11/17/22 17:16	11/18/22 14:09	205-99-2	P1
Benzo(g,h,i)perylene	0.092 U	mg/kg	0.37	0.092	1	11/17/22 17:16	11/18/22 14:09	191-24-2	P1
Benzo(k)fluoranthene	0.097 U	mg/kg	0.37	0.097	1	11/17/22 17:16	11/18/22 14:09	207-08-9	P1
Chrysene	0.048 U	mg/kg	0.37	0.048	1	11/17/22 17:16	11/18/22 14:09	218-01-9	P1
Dibenz(a,h)anthracene	0.084 U	mg/kg	0.37	0.084	1	11/17/22 17:16	11/18/22 14:09	53-70-3	P1
Fluoranthene	0.12 U	mg/kg	0.37	0.12	1	11/17/22 17:16	11/18/22 14:09	206-44-0	P1
Fluorene	0.13 U	mg/kg	0.40	0.13	1	11/17/22 17:16	11/18/22 14:09	86-73-7	P1
Indeno(1,2,3-cd)pyrene	0.083 U	mg/kg	0.37	0.083	1	11/17/22 17:16	11/18/22 14:09	193-39-5	P1
1-Methylnaphthalene	0.060 U	mg/kg	0.43	0.060	1	11/17/22 17:16	11/18/22 14:09	90-12-0	P1
2-Methylnaphthalene	0.057 U	mg/kg	0.42	0.057	1	11/17/22 17:16	11/18/22 14:09	91-57-6	P1
Naphthalene	0.13 U	mg/kg	0.38	0.13	1	11/17/22 17:16	11/18/22 14:09	91-20-3	P1
Phenanthrene	0.052 U	mg/kg	0.37	0.052	1	11/17/22 17:16	11/18/22 14:09	85-01-8	P1
Pyrene	0.048 U	mg/kg	0.37	0.048	1	11/17/22 17:16	11/18/22 14:09	129-00-0	P1
Surrogates									
Nitrobenzene-d5 (S)	45	%	24-98		1	11/17/22 17:16	11/18/22 14:09	4165-60-0	
2-Fluorobiphenyl (S)	69	%	29-101		1	11/17/22 17:16	11/18/22 14:09	321-60-8	
p-Terphenyl-d14 (S)	78	%	29-112		1	11/17/22 17:16	11/18/22 14:09	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	s - Ormond E	Beach					
Percent Moisture	55.3	%	0.10	0.10	1		11/17/22 08:52		
Total Nitrogen Calculation	Analytical	Method: TKN	+NOx Calcul	ation					
-	Pace Anal	vtical Service	s - Ormond E	Beach					
Total Nitrogen Soil	2500	mg/kg	44.7	24.6	1		12/05/22 15:17		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	ration Meth	od: EP	A 351.2			
	Pace Anal	vtical Service	s - Ormond B	Beach					
Nitrogen, Kjeldahl, Total	2500	mg/kg	223	123	1	11/21/22 10:59	11/25/22 14:39	7727-37-9	
353.2 Nitrogen, NOx	-		.353.2 Prepa s - Ormond B		od: EP	A 353.2			
Nitrogen, NO2 plus NO3	0.56 U	mg/kg	1.1	0.56	1	11/19/22 20:30	11/19/22 22:04		
365.4 Phosphorus, Total	-		365.4 Prepa s - Ormond E		od: EP	A 365.4			
Phosphorus, Total (as P)	146	mg/kg	66.9	58.0	1	11/21/22 10:59	11/25/22 14:39	7723-14-0	

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 9 Comp 8 11 12 14 Lab ID: 35760275003 Collected: 11/14/22 11:00 Received: 11/16/22 15:00 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units PQL MDL DF Prepared Analyzed CAS No. Qual Analytical Method: FL-PRO Preparation Method: EPA 3546 **FL-PRO Soil Microwave** Pace Analytical Services - Ormond Beach **Petroleum Range Organics** 49.7 mg/kg 31.5 27.1 1 11/17/22 10:23 11/19/22 02:47 P1 Surrogates 86 % 66-136 11/17/22 10:23 11/19/22 02:47 84-15-1 o-Terphenyl (S) 1 N-Pentatriacontane (S) 100 % 42-159 11/17/22 10:23 11/19/22 02:47 630-07-09 1 Analytical Method: EPA 6010 Preparation Method: EPA 3050 **6010 MET ICP** Pace Analytical Services - Ormond Beach 9.2 0.86 11/22/22 14:46 11/22/22 22:10 7440-38-2 Arsenic mg/kg 1.7 1 Barium 1.9 mg/kg 1.7 0.29 11/22/22 14:46 11/22/22 22:10 7440-39-3 1 Cadmium 0.37 mg/kg 0.17 0.086 1 11/22/22 14:46 11/22/22 22:10 7440-43-9 Chromium 6.1 0.86 0.43 11/22/22 14:46 11/22/22 22:10 7440-47-3 mg/kg 1 172 8.6 4.3 11/22/22 14:46 11/23/22 00:58 7440-50-8 Copper mg/kg 10 8.1 0.86 11/22/22 22:10 7439-92-1 Lead mg/kg 1.7 11/22/22 14:46 1 1.3 U Selenium mg/kg 2.6 1.3 1 11/22/22 14:46 11/22/22 22:10 7782-49-2 0.19 U Silver mg/kg 0.86 0.19 1 11/22/22 14:46 11/22/22 22:10 7440-22-4 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 11/20/22 12:30 Pace Analytical Services - Ormond Beach Arsenic 0.042 I mg/L 0.10 0.034 11/21/22 11:54 11/22/22 05:45 7440-38-2 1 Barium 0.013 I 0.0084 11/21/22 11:54 11/22/22 05:45 7440-39-3 mg/L 0.10 1 Cadmium 0.0033 U 0.010 0.0033 11/22/22 05:45 7440-43-9 mg/L 11/21/22 11:54 1 Chromium 0.017 U mg/L 0.050 0.017 11/22/22 05:45 7440-47-3 11/21/22 11:54 1 Copper 0.026 U mg/L 0.050 0.026 11/21/22 11:54 11/22/22 05:45 7440-50-8 1 Lead 0.021 U mg/L 0.10 0.021 1 11/21/22 11:54 11/22/22 05:45 7439-92-1 Selenium 0.039 U mg/L 0.15 0.039 1 11/21/22 11:54 11/22/22 05:45 7782-49-2 Silver 0.010 U mg/L 0.050 0.010 1 11/21/22 11:54 11/22/22 05:45 7440-22-4 Analytical Method: EPA 7470 Preparation Method: EPA 7470 7470 Mercury, TCLP Leachate Method/Date: EPA 1311; 11/20/22 12:30 Pace Analytical Services - Ormond Beach 0.00090 U 0.0020 0.00090 11/21/22 12:13 11/22/22 09:56 7439-97-6 Mercury mg/L 1 Analytical Method: EPA 7471 Preparation Method: EPA 7471 7471 Mercury Pace Analytical Services - Ormond Beach 11/18/22 09:16 11/21/22 11:20 7439-97-6 0.068 0.031 0.015 Mercurv mg/kg 1 8270 MSSV Short List Microwave Analytical Method: EPA 8270 Preparation Method: EPA 3546 Pace Analytical Services - Ormond Beach 0.29 U Acenaphthene mg/kg 0.64 0.29 1 11/17/22 17:16 11/18/22 14:35 83-32-9 P1 Acenaphthylene 0.095 U mg/kg 0.61 0.095 11/17/22 17:16 11/18/22 14:35 208-96-8 P1 1 0.082 U 11/17/22 17:16 11/18/22 14:35 120-12-7 P1 Anthracene mg/kg 0.64 0.082 1 0.081 U P1 Benzo(a)anthracene mg/kg 0.61 0.081 1 11/17/22 17:16 11/18/22 14:35 56-55-3

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 9 Comp 8 11 12 14 Lab ID: 35760275003 Collected: 11/14/22 11:00 Received: 11/16/22 15:00 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepa	ration Meth	od: EP/	A 3546			
	Pace Anal	ytical Service	es - Ormond E	Beach					
Benzo(a)pyrene	0.15 U	mg/kg	0.61	0.15	1	11/17/22 17:16	11/18/22 14:35	50-32-8	P1
Benzo(b)fluoranthene	0.16 U	mg/kg	0.61	0.16	1	11/17/22 17:16	11/18/22 14:35	205-99-2	P1
Benzo(g,h,i)perylene	0.15 U	mg/kg	0.61	0.15	1	11/17/22 17:16	11/18/22 14:35	191-24-2	P1
Benzo(k)fluoranthene	0.16 U	mg/kg	0.61	0.16	1	11/17/22 17:16	11/18/22 14:35	207-08-9	P1
Chrysene	0.081 U	mg/kg	0.61	0.081	1	11/17/22 17:16	11/18/22 14:35	218-01-9	P1
Dibenz(a,h)anthracene	0.14 U	mg/kg	0.61	0.14	1	11/17/22 17:16	11/18/22 14:35	53-70-3	P1
Fluoranthene	0.20 U	mg/kg	0.61	0.20	1	11/17/22 17:16	11/18/22 14:35	206-44-0	P1
Fluorene	0.21 U	mg/kg	0.66	0.21	1	11/17/22 17:16	11/18/22 14:35	86-73-7	P1
Indeno(1,2,3-cd)pyrene	0.14 U	mg/kg	0.61	0.14	1	11/17/22 17:16	11/18/22 14:35	193-39-5	P1
1-Methylnaphthalene	0.10 U	mg/kg	0.72	0.10	1	11/17/22 17:16	11/18/22 14:35	90-12-0	P1
2-Methylnaphthalene	0.095 U	mg/kg	0.70	0.095	1	11/17/22 17:16	11/18/22 14:35	91-57-6	P1
Naphthalene	0.21 U	mg/kg	0.63	0.21	1	11/17/22 17:16	11/18/22 14:35	91-20-3	P1
Phenanthrene	0.086 U	mg/kg	0.61	0.086	1	11/17/22 17:16	11/18/22 14:35	85-01-8	P1
Pyrene	0.081 U	mg/kg	0.61	0.081	1	11/17/22 17:16	11/18/22 14:35	129-00-0	P1
Surrogates									
Nitrobenzene-d5 (S)	41	%	24-98		1	11/17/22 17:16	11/18/22 14:35	4165-60-0	
2-Fluorobiphenyl (S)	62	%	29-101		1	11/17/22 17:16	11/18/22 14:35	321-60-8	
p-Terphenyl-d14 (S)	69	%	29-112		1	11/17/22 17:16	11/18/22 14:35	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Ormond E	Beach					
Percent Moisture	68.9	%	0.10	0.10	1		11/17/22 08:52		
Total Nitrogen Calculation	Analytical	Method: TKN	I+NOx Calcul	ation					
c .	-		es - Ormond E						
Total Nitrogen Soil	769	mg/kg	64.3	35.4	1		12/05/22 15:17		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	aration Meth	nod: EF	PA 351.2			
,	-		s - Ormond E						
Nitrogen, Kjeldahl, Total	769	mg/kg	321	177	1	11/21/22 10:59	11/25/22 14:40	7727-37-9	
353.2 Nitrogen, NOx			353.2 Prepa s - Ormond E		nod: EF	PA 353.2			
Nitrogen, NO2 plus NO3	0.81 U	mg/kg	1.6	0.81	1	11/19/22 20:30	11/19/22 22:05		
365.4 Phosphorus, Total	Analytical	Method: EPA	365.4 Prepa	aration Meth	nod: EF	PA 365.4			
•	-		es - Ormond E						
Phosphorus, Total (as P)	83.6 U	mg/kg	96.4	83.6	1	11/21/22 10:59	11/25/22 14:40	7723-14-0	

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Pace Project No.: 35760275									
Sample: LAKE 9 Comp 17 18 20 2	1 Lab ID:	35760275004	Collected	: 11/14/2	2 13:05	Received: 11/	16/22 15:00 M	atrix: Solid	
Results reported on a "dry weight"	' basis and are	adjusted for	percent mo	isture, sa	mple si	ze and any diluti	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analvtical	Method: FL-PR	O Preparat	ion Metho	d: EPA (3546			
	-	vtical Services							
Petroleum Range Organics <i>Surrogates</i>	23.5 U	mg/kg	27.4	23.5	1	11/17/22 10:23	11/19/22 05:38		P1
o-Terphenyl (S)	81	%	66-136		1	11/17/22 10:23	11/19/22 05:38	84-15-1	
N-Pentatriacontane (S)	110	%	42-159		1	11/17/22 10:23	11/19/22 05:38	630-07-09	
6010 MET ICP	Analytical	Method: EPA 6	010 Prepara	ation Meth	nod: EPA	A 3050			
	Pace Anal	ytical Services	- Ormond Be	each					
Arsenic	14.5	mg/kg	1.4	0.69	1	11/22/22 14:46	11/22/22 22:13	7440-38-2	
Barium	1.5	mg/kg	1.4	0.23	1	11/22/22 14:46	11/22/22 22:13	7440-39-3	
Cadmium	0.28	mg/kg	0.14	0.069	1	11/22/22 14:46	11/22/22 22:13	7440-43-9	
Chromium	6.6	mg/kg	0.69	0.35	1	11/22/22 14:46	11/22/22 22:13	7440-47-3	
Copper	345	mg/kg	6.9	3.5	10	11/22/22 14:46	11/23/22 01:07	7440-50-8	
Lead	5.2	mg/kg	1.4	0.69	1	11/22/22 14:46	11/22/22 22:13	7439-92-1	
Selenium	1.0 U	mg/kg	2.1	1.0	1	11/22/22 14:46	11/22/22 22:13	7782-49-2	
Silver	0.15 U	mg/kg	0.69	0.15	1	11/22/22 14:46	11/22/22 22:13	7440-22-4	
6010 MET ICP, TCLP	•	Method: EPA 6 Method/Date: E				3010			
	Pace Anal	vtical Services	- Ormond Be	each					
Arsenic	0.10	mg/L	0.10	0.034	1	11/21/22 11:54	11/22/22 05:48	7440-38-2	
Barium	0.013 I	mg/L	0.10	0.0084	1	11/21/22 11:54	11/22/22 05:48	7440-39-3	
Cadmium	0.0033 U	mg/L	0.010	0.0033	1	11/21/22 11:54	11/22/22 05:48	7440-43-9	
Chromium	0.017 U	mg/L	0.050	0.017	1	11/21/22 11:54	11/22/22 05:48	7440-47-3	
Copper	0.026 U	mg/L	0.050	0.026	1	11/21/22 11:54	11/22/22 05:48	7440-50-8	
Lead	0.021 U	mg/L	0.10	0.021	1	11/21/22 11:54	11/22/22 05:48	7439-92-1	
Selenium	0.039 U	mg/L	0.15	0.039	1	11/21/22 11:54	11/22/22 05:48	7782-49-2	
Silver	0.010 U	mg/L	0.050	0.010	1	11/21/22 11:54	11/22/22 05:48	7440-22-4	
7470 Mercury, TCLP	Leachate I	Method: EPA 7 Method/Date: E ytical Services	PA 1311; 11	/20/22 12		A 7470			
Mercury	0.0010 I	mg/L	0.0020	0.00090	1	11/21/22 12:13	11/22/22 10:03	7439-97-6	
7471 Mercury	-	Method: EPA 7			nod: EP/	7471			
Mercury	0.043	mg/kg	0.027	0.013	1	11/18/22 09:16	11/21/22 11:27	7439-97-6	
8270 MSSV Short List Microwave		Method: EPA 8 ytical Services	•		nod: EP/	3546			
Acenaphthene	0.18 U	mg/kg	0.40	0.18	1	11/17/22 17:16	11/18/22 15:01	83-32-9	P1
Acenaphthylene	0.059 U	mg/kg	0.38	0.059	1	11/17/22 17:16	11/18/22 15:01		P1
Anthracene	0.051 U	mg/kg	0.40	0.051	1		11/18/22 15:01		P1
Benzo(a)anthracene	0.050 U	mg/kg	0.38	0.050	1		11/18/22 15:01		P1
		5 5							

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 9 Comp 17 18 20 21 Lab ID: 35760275004 Collected: 11/14/22 13:05 Received: 11/16/22 15:00 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepa	ration Meth	od: EP/	A 3546			
	Pace Anal	ytical Service	es - Ormond E	Beach					
Benzo(a)pyrene	0.093 U	mg/kg	0.38	0.093	1	11/17/22 17:16	11/18/22 15:01	50-32-8	P1
Benzo(b)fluoranthene	0.10 U	mg/kg	0.38	0.10	1	11/17/22 17:16	11/18/22 15:01		P1
Benzo(g,h,i)perylene	0.094 U	mg/kg	0.38	0.094	1	11/17/22 17:16	11/18/22 15:01	191-24-2	P1
Benzo(k)fluoranthene	0.10 U	mg/kg	0.38	0.10	1	11/17/22 17:16	11/18/22 15:01	207-08-9	P1
Chrysene	0.050 U	mg/kg	0.38	0.050	1	11/17/22 17:16	11/18/22 15:01	218-01-9	P1
Dibenz(a,h)anthracene	0.087 U	mg/kg	0.38	0.087	1	11/17/22 17:16	11/18/22 15:01	53-70-3	P1
Fluoranthene	0.12 U	mg/kg	0.38	0.12	1	11/17/22 17:16	11/18/22 15:01	206-44-0	P1
Fluorene	0.13 U	mg/kg	0.41	0.13	1	11/17/22 17:16	11/18/22 15:01	86-73-7	P1
Indeno(1,2,3-cd)pyrene	0.086 U	mg/kg	0.38	0.086	1	11/17/22 17:16	11/18/22 15:01	193-39-5	P1
1-Methylnaphthalene	0.062 U	mg/kg	0.44	0.062	1	11/17/22 17:16	11/18/22 15:01	90-12-0	P1
2-Methylnaphthalene	0.059 U	mg/kg	0.43	0.059	1	11/17/22 17:16	11/18/22 15:01	91-57-6	P1
Naphthalene	0.13 U	mg/kg	0.39	0.13	1	11/17/22 17:16	11/18/22 15:01	91-20-3	P1
Phenanthrene	0.053 U	mg/kg	0.38	0.053	1	11/17/22 17:16	11/18/22 15:01	85-01-8	P1
Pyrene	0.050 U	mg/kg	0.38	0.050	1	11/17/22 17:16	11/18/22 15:01	129-00-0	P1
Surrogates									
Nitrobenzene-d5 (S)	45	%	24-98		1	11/17/22 17:16	11/18/22 15:01	4165-60-0	
2-Fluorobiphenyl (S)	68	%	29-101		1	11/17/22 17:16	11/18/22 15:01	321-60-8	
p-Terphenyl-d14 (S)	73	%	29-112		1	11/17/22 17:16	11/18/22 15:01	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Ormond E	Beach					
Percent Moisture	63.6	%	0.10	0.10	1		11/17/22 08:53		
Total Nitrogen Calculation	Analytical	Method: TKN	I+NOx Calcul	ation					
	Pace Anal	ytical Service	es - Ormond E	Beach					
Total Nitrogen Soil	1210	mg/kg	54.9	30.2	1		12/05/22 15:17		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	aration Meth	od: EP	PA 351.2			
, ,	Pace Anal	ytical Service	s - Ormond E	Beach					
Nitrogen, Kjeldahl, Total	1210	mg/kg	273	150	1	11/21/22 10:59	11/25/22 14:43	7727-37-9	
353.2 Nitrogen, NOx			353.2 Prepa es - Ormond E		iod: EP	PA 353.2			
Nitrogen, NO2 plus NO3	0.69 U	mg/kg	1.4	0.69	1	11/19/22 20:30	11/19/22 22:06		
365.4 Phosphorus, Total	-		365.4 Prepa s - Ormond E		iod: EP	PA 365.4			
Phosphorus, Total (as P)	76.6 I	mg/kg	82.0	71.1	1	11/21/22 10:59	11/25/22 14:43	7723-14-0	
	· · · ·				-				

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No .: 35760275

Sample: LAKE 9 Comp 15 16 19 22 Lab ID: 35760275005 Collected: 11/14/22 14:20 Received: 11/16/22 15:00 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units PQL MDL DF Prepared Analyzed CAS No. Qual Analytical Method: FL-PRO Preparation Method: EPA 3546 **FL-PRO Soil Microwave** Pace Analytical Services - Ormond Beach **Petroleum Range Organics** 20.6 U mg/kg 24.0 20.6 1 11/17/22 10:23 11/19/22 03:02 P1 Surrogates 93 % 66-136 11/17/22 10:23 11/19/22 03:02 84-15-1 o-Terphenyl (S) 1 N-Pentatriacontane (S) 106 % 42-159 11/17/22 10:23 11/19/22 03:02 630-07-09 1 Analytical Method: EPA 6010 Preparation Method: EPA 3050 **6010 MET ICP** Pace Analytical Services - Ormond Beach Arsenic 15.6 mg/kg 1.5 0.74 1 11/22/22 14:46 11/22/22 22:16 7440-38-2 Barium mg/kg 1.5 0.25 11/22/22 14:46 11/22/22 22:16 7440-39-3 1.9 1 Cadmium 0.086 I mg/kg 0.15 0.074 1 11/22/22 14:46 11/22/22 22:16 7440-43-9 Chromium 4.0 0.74 0.37 11/22/22 14:46 11/22/22 22:16 7440-47-3 mg/kg 1 51.8 0.74 0.37 11/22/22 14:46 11/22/22 22:16 7440-50-8 Copper mg/kg 1 Lead 4.2 1.5 0.74 11/22/22 14:46 11/22/22 22:16 7439-92-1 mg/kg 1 1.1 U Selenium mg/kg 2.2 1.1 1 11/22/22 14:46 11/22/22 22:16 7782-49-2 0.16 U Silver mg/kg 0.74 0.16 1 11/22/22 14:46 11/22/22 22:16 7440-22-4 6010 MET ICP, TCLP Analytical Method: EPA 6010 Preparation Method: EPA 3010 Leachate Method/Date: EPA 1311; 11/20/22 12:30 Pace Analytical Services - Ormond Beach Arsenic 0.051 I mg/L 0.034 11/21/22 11:54 11/22/22 05:51 7440-38-2 0.10 1 Barium 0.011 I 0.0084 11/21/22 11:54 11/22/22 05:51 7440-39-3 mg/L 0.10 1 Cadmium 0.0033 U 11/22/22 05:51 7440-43-9 mg/L 0.010 0.0033 11/21/22 11:54 1 0.017 U Chromium 11/22/22 05:51 7440-47-3 mg/L 0.050 0.017 11/21/22 11:54 1 Copper 0.026 U mg/L 0.050 0.026 11/21/22 11:54 11/22/22 05:51 7440-50-8 1

Lead

Silver

Selenium

7470 Mercury, TCLP	Analytical Method: EPA 7470 Preparation Method: EPA 7470 Leachate Method/Date: EPA 1311: 11/20/22 12:30														
	Pace Anal	ytical Service	es - Ormond B	each											
Mercury	0.00090 I	mg/L	0.0020	0.00090	1	11/21/22 12:13	11/22/22 10:05	7439-97-6							
7471 Mercury		Analytical Method: EPA 7471 Preparation Method: EPA 7471 Pace Analytical Services - Ormond Beach													
Mercury	0.034	mg/kg	0.022	0.011	1	11/18/22 09:16	11/21/22 11:30	7439-97-6							
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepar	ation Metho	d: EP	A 3546									
	Pace Anal	ytical Service	es - Ormond B	each											
Acenaphthene	0.22 U	mg/kg	0.48	0.22	1	11/17/22 17:16	11/18/22 15:28	83-32-9	P1						
Acenaphthylene	0.071 U	mg/kg	0.46	0.071	1	11/17/22 17:16	11/18/22 15:28	208-96-8	P1						
Anthracene	0.062 U	mg/kg	0.48	0.062	1	11/17/22 17:16	11/18/22 15:28	120-12-7	P1						

0.46

0.10

0.15

0.050

0.021

0.039

0.010

1

1

1

11/21/22 11:54

11/21/22 11:54

11/21/22 11:54

11/22/22 05:51 7439-92-1

11/22/22 05:51 7782-49-2

11/22/22 05:51 7440-22-4

11/17/22 17:16 11/18/22 15:28 56-55-3

0.021 U

0.039 U

0.010 U

0.060 U

mg/L

mg/L

mg/L

mg/kg

REPORT OF LABORATORY ANALYSIS

0.060

1

Benzo(a)anthracene

P1

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 9 Comp 15 16 19 22 Lab ID: 35760275005 Collected: 11/14/22 14:20 Received: 11/16/22 15:00 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepa	ration Meth	od: EP/	A 3546			
	Pace Anal	ytical Service	es - Ormond E	Beach					
Benzo(a)pyrene	0.11 U	mg/kg	0.46	0.11	1	11/17/22 17:16	11/18/22 15:28	50-32-8	P1
Benzo(b)fluoranthene	0.16 I	mg/kg	0.46	0.12	1	11/17/22 17:16	11/18/22 15:28	205-99-2	P1
Benzo(g,h,i)perylene	0.11 U	mg/kg	0.46	0.11	1	11/17/22 17:16	11/18/22 15:28	191-24-2	P1
Benzo(k)fluoranthene	0.12 U	mg/kg	0.46	0.12	1	11/17/22 17:16	11/18/22 15:28	207-08-9	P1
Chrysene	0.060 U	mg/kg	0.46	0.060	1	11/17/22 17:16	11/18/22 15:28	218-01-9	P1
Dibenz(a,h)anthracene	0.10 U	mg/kg	0.46	0.10	1	11/17/22 17:16	11/18/22 15:28	53-70-3	P1
Fluoranthene	0.15 U	mg/kg	0.46	0.15	1	11/17/22 17:16	11/18/22 15:28	206-44-0	P1
Fluorene	0.16 U	mg/kg	0.50	0.16	1	11/17/22 17:16	11/18/22 15:28	86-73-7	P1
Indeno(1,2,3-cd)pyrene	0.10 U	mg/kg	0.46	0.10	1	11/17/22 17:16	11/18/22 15:28	193-39-5	P1
1-Methylnaphthalene	0.075 U	mg/kg	0.54	0.075	1	11/17/22 17:16	11/18/22 15:28	90-12-0	P1
2-Methylnaphthalene	0.071 U	mg/kg	0.52	0.071	1	11/17/22 17:16	11/18/22 15:28	91-57-6	P1
Naphthalene	0.16 U	mg/kg	0.47	0.16	1	11/17/22 17:16	11/18/22 15:28	91-20-3	P1
Phenanthrene	0.065 U	mg/kg	0.46	0.065	1	11/17/22 17:16	11/18/22 15:28	85-01-8	P1
Pyrene	0.060 U	mg/kg	0.46	0.060	1	11/17/22 17:16	11/18/22 15:28	129-00-0	P1
Surrogates									
Nitrobenzene-d5 (S)	47	%	24-98		1	11/17/22 17:16	11/18/22 15:28	4165-60-0	
2-Fluorobiphenyl (S)	69	%	29-101		1	11/17/22 17:16	11/18/22 15:28	321-60-8	
p-Terphenyl-d14 (S)	74	%	29-112		1	11/17/22 17:16	11/18/22 15:28	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Ormond E	Beach					
Percent Moisture	59.4	%	0.10	0.10	1		11/17/22 11:36		
Total Nitrogen Calculation	Analytical	Method: TKN	I+NOx Calcul	ation					
-	Pace Anal	ytical Service	es - Ormond E	Beach					
Total Nitrogen Soil	2210	mg/kg	49.3	27.1	1		12/05/22 15:17		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	aration Meth	nod: EF	PA 351.2			
, ,	-		s - Ormond E						
Nitrogen, Kjeldahl, Total	2210	mg/kg	246	135	1	11/21/22 10:59	11/25/22 14:44	7727-37-9	
353.2 Nitrogen, NOx	-		353.2 Prepa s - Ormond E		nod: EF	PA 353.2			
Nitrogen, NO2 plus NO3	1.5	mg/kg	1.2	0.62	1	11/19/22 20:30	11/19/22 22:07		
365.4 Phosphorus, Total	Analvtical	Method: EPA	365.4 Prepa	aration Meth	nod: EF	PA 365.4			
	-		es - Ormond E						
Phosphorus, Total (as P)	69.5 I	mg/kg	73.7	63.9	1	11/21/22 10:59	11/25/22 14:44	7723-14-0	

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 9 Comp 7 9 10 13	Lab ID:	35760275006	Collecte	d: 11/14/22	2 15:20	Received: 11/	16/22 15:00 M	atrix: Solid	
Results reported on a "dry weight"	' basis and are	e adjusted for	percent m	oisture, sai	nple si	ze and any dilut	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical	Method: FL-PR	O Prepara	ation Metho	d: EPA (3546			_
	Pace Anal	ytical Services	- Ormond E	Beach					
Petroleum Range Organics Surrogates	11.1 U	mg/kg	12.9	11.1	1	11/17/22 10:23	11/19/22 05:38		P1
o-Terphenyl (S)	98	%	66-136		1	11/17/22 10:23	11/19/22 05:38	84-15-1	
N-Pentatriacontane (S)	104	%	42-159		1	11/17/22 10:23	11/19/22 05:38	630-07-09	
6010 MET ICP	Analytical	Method: EPA 6	010 Prepa	ration Meth	od: EPA	3050			
	Pace Anal	ytical Services	- Ormond E	Beach					
Arsenic	0.49 I	mg/kg	0.63	0.32	1	11/22/22 14:46	11/22/22 22:19	7440-38-2	
Barium	0.19 I	mg/kg	0.63	0.11	1	11/22/22 14:46	11/22/22 22:19	7440-39-3	
Cadmium	0.032 U	mg/kg	0.063	0.032	1	11/22/22 14:46	11/22/22 22:19	7440-43-9	
Chromium	0.30 I	mg/kg	0.32	0.16	1	11/22/22 14:46	11/22/22 22:19	7440-47-3	
Copper	3.0	mg/kg	0.32	0.16	1	11/22/22 14:46	11/22/22 22:19	7440-50-8	
Lead	0.43 I	mg/kg	0.63	0.32	1	11/22/22 14:46	11/22/22 22:19	7439-92-1	
Selenium	0.48 U	mg/kg	0.95	0.48	1	11/22/22 14:46	11/22/22 22:19	7782-49-2	
Silver	0.070 U	mg/kg	0.32	0.070	1	11/22/22 14:46	11/22/22 22:19	7440-22-4	
6010 MET ICP, TCLP	Leachate	Method: EPA 6 Method/Date: E ytical Services	EPA 1311; 1	1/20/22 12:		3010			
Arsenic	0.034 U	mg/L	0.10	0.034	1	11/21/22 11:54	11/22/22 05:55	7440-38-2	
Barium	0.0084 U	mg/L	0.10	0.0084	1	11/21/22 11:54	11/22/22 05:55	7440-39-3	
Cadmium	0.0033 U	mg/L	0.010	0.0033	1	11/21/22 11:54	11/22/22 05:55	7440-43-9	
Chromium	0.017 U	mg/L	0.050	0.017	1	11/21/22 11:54	11/22/22 05:55	7440-47-3	
Copper	0.026 U	mg/L	0.050	0.026	1	11/21/22 11:54	11/22/22 05:55	7440-50-8	
Lead	0.021 U	mg/L	0.10	0.021	1	11/21/22 11:54	11/22/22 05:55	7439-92-1	
Selenium	0.039 U	mg/L	0.15	0.039	1	11/21/22 11:54	11/22/22 05:55	7782-49-2	
Silver	0.010 U	mg/L	0.050	0.010	1	11/21/22 11:54	11/22/22 05:55	7440-22-4	
7470 Mercury, TCLP	Leachate	Method: EPA 7 Method/Date: E ytical Services	PA 1311; 1	1/20/22 12:		A 7470			
Mercury	0.00090 I	mg/L	0.0020	0.00090	1	11/21/22 12:13	11/22/22 10:07	7439-97-6	
7471 Mercury	-	Method: EPA 7 ytical Services			od: EPA	A 7471			
Mercury	0.0092 I	mg/kg	0.012	0.0058	1	11/18/22 09:16	11/21/22 11:32	7439-97-6	
8270 MSSV Short List Microwave		Method: EPA 8 ytical Services			od: EPA	3546			
Acenaphthene	0.084 U	mg/kg	0.19	0.084	1	11/17/22 17:16	11/18/22 15:54	83-32-9	P1
Acenaphthylene	0.028 U	mg/kg	0.18	0.028	1		11/18/22 15:54		P1
Anthracene	0.024 U	mg/kg	0.19	0.024	1		11/18/22 15:54		P1
Benzo(a)anthracene	0.041 I	mg/kg	0.18	0.024	1		11/18/22 15:54		P1
		5 5							

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

 Sample:
 LAKE 9 Comp 7 9 10 13
 Lab ID:
 35760275006
 Collected:
 11/14/22 15:20
 Received:
 11/16/22 15:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepa	ration Meth	od: EP/	A 3546			
	Pace Anal	ytical Service	es - Ormond E	Beach					
Benzo(a)pyrene	0.074 I	mg/kg	0.18	0.044	1	11/17/22 17:16	11/18/22 15:54	50-32-8	P1
Benzo(b)fluoranthene	0.11 I	mg/kg	0.18	0.047	1	11/17/22 17:16	11/18/22 15:54		P1
Benzo(g,h,i)perylene	0.057 I	mg/kg	0.18	0.045	1	11/17/22 17:16	11/18/22 15:54	191-24-2	P1
Benzo(k)fluoranthene	0.047 U	mg/kg	0.18	0.047	1	11/17/22 17:16	11/18/22 15:54	207-08-9	P1
Chrysene	0.035 I	mg/kg	0.18	0.024	1	11/17/22 17:16	11/18/22 15:54	218-01-9	P1
Dibenz(a,h)anthracene	0.041 U	mg/kg	0.18	0.041	1	11/17/22 17:16	11/18/22 15:54	53-70-3	P1
Fluoranthene	0.058 U	mg/kg	0.18	0.058	1	11/17/22 17:16	11/18/22 15:54	206-44-0	P1
Fluorene	0.063 U	mg/kg	0.20	0.063	1	11/17/22 17:16	11/18/22 15:54	86-73-7	P1
Indeno(1,2,3-cd)pyrene	0.046 I	mg/kg	0.18	0.041	1	11/17/22 17:16	11/18/22 15:54	193-39-5	P1
1-Methylnaphthalene	0.030 U	mg/kg	0.21	0.030	1	11/17/22 17:16	11/18/22 15:54	90-12-0	P1
2-Methylnaphthalene	0.028 U	mg/kg	0.21	0.028	1	11/17/22 17:16	11/18/22 15:54	91-57-6	P1
Naphthalene	0.063 U	mg/kg	0.18	0.063	1	11/17/22 17:16	11/18/22 15:54	91-20-3	P1
Phenanthrene	0.025 U	mg/kg	0.18	0.025	1	11/17/22 17:16	11/18/22 15:54	85-01-8	P1
Pyrene	0.073 I	mg/kg	0.18	0.024	1	11/17/22 17:16	11/18/22 15:54	129-00-0	P1
Surrogates									
Nitrobenzene-d5 (S)	32	%	24-98		1	11/17/22 17:16	11/18/22 15:54	4165-60-0	
2-Fluorobiphenyl (S)	49	%	29-101		1	11/17/22 17:16	11/18/22 15:54	321-60-8	
p-Terphenyl-d14 (S)	73	%	29-112		1	11/17/22 17:16	11/18/22 15:54	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Ormond E	Beach					
Percent Moisture	23.5	%	0.10	0.10	1		11/17/22 11:36		
Total Nitrogen Calculation	Analytical	Method: TKN	I+NOx Calcul	ation					
	-		es - Ormond E						
Total Nitrogen Soil	148	mg/kg	26.1	14.4	1		12/05/22 15:17		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	aration Meth	od: EF	PA 351.2			
, ,	-		es - Ormond E						
Nitrogen, Kjeldahl, Total	148	mg/kg	130	71.4	1	11/21/22 10:59	11/25/22 14:45	7727-37-9	
353.2 Nitrogen, NOx	-		353.2 Prepa s - Ormond E		iod: EF	PA 353.2			
Nitrogen, NO2 plus NO3	0.32 U	mg/kg	0.65	0.32	1	11/19/22 20:30	11/19/22 22:08		
365.4 Phosphorus, Total	-		365.4 Prepa s - Ormond E		iod: EF	PA 365.4			
Phosphorus, Total (as P)	33.7 U	mg/kg	38.9	33.7	1	11/21/22 10.50	11/25/22 14:45	7723-14-0	
	00.7 0	ing/ing	50.5	55.7		11/21/22 10.00	11/20/22 14.40	1120 140	

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 8 Comp 137	Lab ID:	35760275007	Collecte	ed: 11/15/2	2 09:20	Received: 11/	16/22 15:00 M	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	percent m	oisture, sa	mple si	ze and any dilut	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analvtical	Method: FL-PR	O Prepara	ation Metho	d: EPA 3	3546			
	-	vtical Services							
Petroleum Range Organics Surrogates	18.9 U	mg/kg	22.0	18.9	1	11/17/22 10:23	11/19/22 03:18		P1
o-Terphenyl (S)	87	%	66-136		1	11/17/22 10:23	11/19/22 03:18	84-15-1	
N-Pentatriacontane (S)	99	%	42-159		1	11/17/22 10:23	11/19/22 03:18	630-07-09	
6010 MET ICP	Analytical	Method: EPA 6	010 Prepa	aration Meth	nod: EPA	3050			
	Pace Anal	ytical Services	- Ormond I	Beach					
Arsenic	16.4	mg/kg	1.3	0.66	1	11/22/22 14:46	11/22/22 22:22	7440-38-2	
Barium	1.5	mg/kg	1.3	0.22	1	11/22/22 14:46	11/22/22 22:22	7440-39-3	
Cadmium	0.17	mg/kg	0.13	0.066	1	11/22/22 14:46	11/22/22 22:22	7440-43-9	
Chromium	5.1	mg/kg	0.66	0.33	1	11/22/22 14:46	11/22/22 22:22	7440-47-3	
Copper	44.3	mg/kg	0.66	0.33	1	11/22/22 14:46	11/22/22 22:22	7440-50-8	
Lead	28.9	mg/kg	1.3	0.66	1	11/22/22 14:46	11/22/22 22:22	7439-92-1	
Selenium	1.0 U	mg/kg	2.0	1.0	1	11/22/22 14:46	11/22/22 22:22	7782-49-2	
Silver	0.15 U	mg/kg	0.66	0.15	1	11/22/22 14:46	11/22/22 22:22		
6010 MET ICP, TCLP	Leachate	Method: EPA 6 Method/Date: E ytical Services	PA 1311; 1	11/20/22 12:		3010			
Arsenic	0.11	mg/L	0.10	0.034	1	11/21/22 11:54	11/22/22 05:58	7440-38-2	
Barium	0.0089 1	mg/L	0.10	0.0084	1	11/21/22 11:54	11/22/22 05:58		
Cadmium	0.0033 U	mg/L	0.010	0.0033	1	11/21/22 11:54	11/22/22 05:58		
Chromium	0.017 U	mg/L	0.050	0.017	1	11/21/22 11:54	11/22/22 05:58	7440-47-3	
Copper	0.026 U	mg/L	0.050	0.026	1	11/21/22 11:54	11/22/22 05:58	7440-50-8	
Lead	0.021 U	mg/L	0.10	0.021	1	11/21/22 11:54	11/22/22 05:58		
Selenium	0.039 U	mg/L	0.15	0.039	1	11/21/22 11:54	11/22/22 05:58	7782-49-2	
Silver	0.010 U	mg/L	0.050	0.010	1	11/21/22 11:54	11/22/22 05:58		
7470 Mercury, TCLP	Leachate	Method: EPA 7 Method/Date: E ytical Services	PA 1311; 1	11/20/22 12:		x 7470			
Mercury	0.00090 U	mg/L	0.0020	0.00090	1	11/21/22 12:13	11/22/22 10:09	7439-97-6	
7471 Mercury	•	Method: EPA 7 ytical Services	•		nod: EPA	7471			
Mercury	0.074	mg/kg	0.022	0.011	1	11/18/22 09:16	11/21/22 11:34	7439-97-6	
8270 MSSV Short List Microwave	•	Method: EPA 8 ytical Services	•		nod: EPA	3546			
Acenaphthene	0.16 U	mg/kg	0.36	0.16	1	11/17/22 17.16	11/18/22 16:20	83-32-9	P1
Acenaphthylene	0.053 U	mg/kg	0.30	0.10	1		11/18/22 16:20		P1
Anthracene	0.055 U 0.046 U	mg/kg	0.34	0.055	1		11/18/22 16:20		P1
							11/18/22 16:20		
Benzo(a)anthracene	0.045 U	mg/kg	0.34	0.045	1	1/1//22 17:10	11/10/22 10:20	00-00-0	P1

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

 Sample:
 LAKE 8 Comp 137
 Lab ID:
 35760275007
 Collected:
 11/15/22
 09:20
 Received:
 11/16/22
 15:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepa	ration Methe	od: EP/	A 3546			
	Pace Anal	ytical Service	es - Ormond E	Beach					
Benzo(a)pyrene	0.23 I	mg/kg	0.34	0.084	1	11/17/22 17:16	11/18/22 16:20	50-32-8	P1
Benzo(b)fluoranthene	0.28 I	mg/kg	0.34	0.090	1	11/17/22 17:16	11/18/22 16:20	205-99-2	P1
Benzo(g,h,i)perylene	0.19 I	mg/kg	0.34	0.085	1	11/17/22 17:16	11/18/22 16:20	191-24-2	P1
Benzo(k)fluoranthene	0.12 I	mg/kg	0.34	0.090	1	11/17/22 17:16	11/18/22 16:20	207-08-9	P1
Chrysene	0.047 I	mg/kg	0.34	0.045	1	11/17/22 17:16	11/18/22 16:20	218-01-9	P1
Dibenz(a,h)anthracene	0.078 U	mg/kg	0.34	0.078	1	11/17/22 17:16	11/18/22 16:20	53-70-3	P1
Fluoranthene	0.11 U	mg/kg	0.34	0.11	1	11/17/22 17:16	11/18/22 16:20	206-44-0	P1
Fluorene	0.12 U	mg/kg	0.37	0.12	1	11/17/22 17:16	11/18/22 16:20	86-73-7	P1
Indeno(1,2,3-cd)pyrene	0.16 I	mg/kg	0.34	0.077	1	11/17/22 17:16	11/18/22 16:20	193-39-5	P1
1-Methylnaphthalene	0.056 U	mg/kg	0.40	0.056	1	11/17/22 17:16	11/18/22 16:20	90-12-0	P1
2-Methylnaphthalene	0.053 U	mg/kg	0.39	0.053	1	11/17/22 17:16	11/18/22 16:20	91-57-6	P1
Naphthalene	0.12 U	mg/kg	0.35	0.12	1	11/17/22 17:16	11/18/22 16:20	91-20-3	P1
Phenanthrene	0.048 U	mg/kg	0.34	0.048	1	11/17/22 17:16	11/18/22 16:20	85-01-8	P1
Pyrene	0.045 U	mg/kg	0.34	0.045	1	11/17/22 17:16	11/18/22 16:20	129-00-0	P1
Surrogates									
Nitrobenzene-d5 (S)	42	%	24-98		1	11/17/22 17:16	11/18/22 16:20	4165-60-0	
2-Fluorobiphenyl (S)	64	%	29-101		1	11/17/22 17:16	11/18/22 16:20	321-60-8	
p-Terphenyl-d14 (S)	76	%	29-112		1	11/17/22 17:16	11/18/22 16:20	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Ormond E	Beach					
Percent Moisture	55.3	%	0.10	0.10	1		11/17/22 11:37		
Total Nitrogen Calculation	Analytical	Method: TKN	I+NOx Calcul	ation					
-	Pace Anal	ytical Service	es - Ormond E	Beach					
Total Nitrogen Soil	1930	mg/kg	44.7	24.6	1		12/05/22 15:17		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	ration Meth	od: EP	PA 351.2			
, .	-		es - Ormond E						
Nitrogen, Kjeldahl, Total	1930	mg/kg	222	122	1	11/21/22 10:59	11/25/22 14:46	7727-37-9	
353.2 Nitrogen, NOx	Analytical Method: EPA 353.2 Preparation Method: EPA 353.2 Pace Analytical Services - Ormond Beach								
Nitrogen, NO2 plus NO3	0.56 U	mg/kg	1.1	0.56	1	11/19/22 20:30	11/19/22 22:12		
365.4 Phosphorus, Total	Analytical	Method: EPA	365.4 Prepa	ration Meth	od: EP	PA 365.4			
•	-		es - Ormond E						
Phosphorus, Total (as P)	106	mg/kg	66.5	57.7	1	11/21/22 10:59	11/25/22 14:46	7723-14-0	

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 8 Comp 248	Lab ID:	35760275008	Collecte	ed: 11/15/22	2 10:15	Received: 11/	16/22 15:00 M	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted for	percent m	oisture, sa	mple siz	ze and any dilut	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical	Method: FL-PR	O Prepara	ation Metho	d: EPA 3	3546			_
	-	ytical Services							
Petroleum Range Organics Surrogates	12.7 U	mg/kg	14.8	12.7	1	11/17/22 10:23	11/19/22 04:36		P1
o-Terphenyl (S)	94	%	66-136		1	11/17/22 10:23	11/19/22 04:36	84-15-1	
N-Pentatriacontane (S)	104	%	42-159		1	11/17/22 10:23	11/19/22 04:36	630-07-09	
6010 MET ICP	Analytical	Method: EPA 6	010 Prepa	aration Meth	od: EPA	3050			
	Pace Anal	ytical Services	- Ormond I	Beach					
Arsenic	4.2	mg/kg	0.78	0.39	1	11/22/22 14:46	11/22/22 22:26	7440-38-2	
Barium	0.58 I	mg/kg	0.78	0.13	1	11/22/22 14:46	11/22/22 22:26	7440-39-3	
Cadmium	0.058 I	mg/kg	0.078	0.039	1		11/22/22 22:26		
Chromium	1.8	mg/kg	0.39	0.19	1	11/22/22 14:46	11/22/22 22:26		
Copper	24.2	mg/kg	0.39	0.19	1	11/22/22 14:46	11/22/22 22:26	7440-50-8	
Lead	10.2	mg/kg	0.78	0.39	1	11/22/22 14:46	11/22/22 22:26		
Selenium	0.58 U	mg/kg	1.2	0.58	1	11/22/22 14:46	11/22/22 22:26		
Silver	0.086 U	mg/kg	0.39	0.086	1	11/22/22 14:46	11/22/22 22:26		
6010 MET ICP, TCLP	Leachate	Method: EPA 6 Method/Date: E ytical Services	PA 1311; 1	1/20/22 12:		3010			
Arsenic	0.042	mg/L	0.10	0.034	1	11/21/22 11:54	11/22/22 06:01	7440-38-2	
Barium	0.0098 1	mg/L	0.10	0.0084	1	11/21/22 11:54	11/22/22 06:01		
Cadmium	0.0033 U	mg/L	0.010	0.0033	1	11/21/22 11:54	11/22/22 06:01		
Chromium	0.017 U	mg/L	0.050	0.017	1	11/21/22 11:54	11/22/22 06:01		
Copper	0.026 U	mg/L	0.050	0.026	1	11/21/22 11:54	11/22/22 06:01		
Lead	0.021 U	mg/L	0.10	0.021	1	11/21/22 11:54	11/22/22 06:01		
Selenium	0.039 U	mg/L	0.15	0.039	1	11/21/22 11:54	11/22/22 06:01		
Silver	0.010 U	mg/L	0.050	0.010	1	11/21/22 11:54	11/22/22 06:01		
7470 Mercury, TCLP	Leachate	Method: EPA 7 Method/Date: E ytical Services	EPA 1311; 1	1/20/22 12:		7470			
Mercury	0.00090 U	mg/L	0.0020	0.00090	1	11/21/22 12:13	11/22/22 10:12	7439-97-6	
7471 Mercury		Method: EPA 7 ytical Services			od: EPA	7471			
Mercury	0.020	mg/kg	0.014	0.0072	1	11/18/22 09:16	11/21/22 11:36	7439-97-6	
8270 MSSV Short List Microwave	-	Method: EPA 8 ytical Services			od: EPA	3546			
Acenaphthene	0.088 U	mg/kg	0.20	0.088	1	11/17/22 17.16	11/18/22 16:46	83-32-9	P1
Acenaphthylene	0.029 U	mg/kg	0.20	0.088	1		11/18/22 16:46		P1
Anthracene	0.029 U 0.025 U	mg/kg	0.19	0.029	1		11/18/22 16:46		P1
							11/18/22 16:46		P1 P1
Benzo(a)anthracene	0.025 U	mg/kg	0.19	0.025	1	11/17/22 17:16	11/10/22 10:40	00-00-3	FI

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

 Sample:
 LAKE 8 Comp 248
 Lab ID:
 35760275008
 Collected:
 11/15/22
 10:15
 Received:
 11/16/22
 15:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepa	ration Meth	od: EP/	A 3546			
	Pace Anal	ytical Service	es - Ormond E	Beach					
Benzo(a)pyrene	0.046 U	mg/kg	0.19	0.046	1	11/17/22 17:16	11/18/22 16:46	50-32-8	P1
Benzo(b)fluoranthene	0.050 U	mg/kg	0.19	0.050	1	11/17/22 17:16	11/18/22 16:46	205-99-2	P1
Benzo(g,h,i)perylene	0.047 U	mg/kg	0.19	0.047	1	11/17/22 17:16	11/18/22 16:46	191-24-2	P1
Benzo(k)fluoranthene	0.050 U	mg/kg	0.19	0.050	1	11/17/22 17:16	11/18/22 16:46	207-08-9	P1
Chrysene	0.025 U	mg/kg	0.19	0.025	1	11/17/22 17:16	11/18/22 16:46	218-01-9	P1
Dibenz(a,h)anthracene	0.043 U	mg/kg	0.19	0.043	1	11/17/22 17:16	11/18/22 16:46	53-70-3	P1
Fluoranthene	0.061 U	mg/kg	0.19	0.061	1	11/17/22 17:16	11/18/22 16:46	206-44-0	P1
Fluorene	0.066 U	mg/kg	0.20	0.066	1	11/17/22 17:16	11/18/22 16:46	86-73-7	P1
Indeno(1,2,3-cd)pyrene	0.043 U	mg/kg	0.19	0.043	1	11/17/22 17:16	11/18/22 16:46	193-39-5	P1
1-Methylnaphthalene	0.031 U	mg/kg	0.22	0.031	1	11/17/22 17:16	11/18/22 16:46	90-12-0	P1
2-Methylnaphthalene	0.029 U	mg/kg	0.22	0.029	1	11/17/22 17:16	11/18/22 16:46	91-57-6	P1
Naphthalene	0.066 U	mg/kg	0.19	0.066	1	11/17/22 17:16	11/18/22 16:46	91-20-3	P1
Phenanthrene	0.027 U	mg/kg	0.19	0.027	1	11/17/22 17:16	11/18/22 16:46	85-01-8	P1
Pyrene	0.025 U	mg/kg	0.19	0.025	1	11/17/22 17:16	11/18/22 16:46	129-00-0	P1
Surrogates		0 0							
Nitrobenzene-d5 (S)	46	%	24-98		1	11/17/22 17:16	11/18/22 16:46	4165-60-0	
2-Fluorobiphenyl (S)	71	%	29-101		1	11/17/22 17:16	11/18/22 16:46	321-60-8	
p-Terphenyl-d14 (S)	77	%	29-112		1	11/17/22 17:16	11/18/22 16:46	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Ormond E	Beach					
Percent Moisture	33.6	%	0.10	0.10	1		11/17/22 11:37		
Total Nitrogen Calculation	Analytical	Method: TKN	I+NOx Calcul	ation					
-	Pace Anal	ytical Service	es - Ormond E	Beach					
Total Nitrogen Soil	675	mg/kg	30.1	16.6	1		12/05/22 15:17		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	aration Meth	nod: EF	PA 351.2			
,	-		s - Ormond E						
Nitrogen, Kjeldahl, Total	675	mg/kg	150	82.7	1	11/21/22 10:59	11/25/22 14:47	7727-37-9	
353.2 Nitrogen, NOx	-		353.2 Prepa s - Ormond E		nod: EF	PA 353.2			
Nitrogen, NO2 plus NO3	0.38 U	mg/kg	0.76	0.38	1	11/19/22 20:30	11/19/22 22:13		
365.4 Phosphorus, Total	Analytical	Method: EPA	365.4 Prepa	aration Meth	nod: EF	PA 365.4			
• •	-		s - Ormond E						
Phosphorus, Total (as P)	43.3 I	mg/kg	45.1	39.1	1	11/21/22 10:59	11/25/22 14:47	7723-14-0	

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

Sample: LAKE 8 Comp 659	Lab ID:	35760275009	Collecte	d: 11/15/22	2 11:45	Received: 11/	16/22 15:00 M	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted for	percent m	oisture, sai	nple siz	ze and any dilut	ions.		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
FL-PRO Soil Microwave	Analytical	Method: FL-PR	O Prepara	ation Metho	d: EPA 3	3546			
	-	vtical Services							
Petroleum Range Organics Surrogates	59.2	mg/kg	13.6	11.7	1	11/17/22 10:23	11/19/22 03:34		P1
o-Terphenyl (S)	98	%	66-136		1	11/17/22 10:23	11/19/22 03:34	84-15-1	
N-Pentatriacontane (S)	108	%	42-159		1	11/17/22 10:23	11/19/22 03:34	630-07-09	
6010 MET ICP	Analytical	Method: EPA 6	010 Prepa	ration Meth	od: EPA	3050			
	Pace Anal	ytical Services	- Ormond I	Beach					
Arsenic	4.1	mg/kg	0.76	0.38	1	11/22/22 14:46	11/22/22 22:41	7440-38-2	
Barium	2.2	mg/kg	0.76	0.13	1	11/22/22 14:46	11/22/22 22:41	7440-39-3	
Cadmium	0.11	mg/kg	0.076	0.038	1	11/22/22 14:46	11/22/22 22:41	7440-43-9	
Chromium	4.6	mg/kg	0.38	0.19	1	11/22/22 14:46	11/22/22 22:41	7440-47-3	
Copper	26.8	mg/kg	0.38	0.19	1	11/22/22 14:46	11/22/22 22:41	7440-50-8	
Lead	37.2	mg/kg	0.76	0.38	1	11/22/22 14:46	11/22/22 22:41		
Selenium	1.5	mg/kg	1.1	0.57	1	11/22/22 14:46	11/22/22 22:41		
Silver	0.083 U	mg/kg	0.38	0.083	1	11/22/22 14:46	11/22/22 22:41		
6010 MET ICP, TCLP	Leachate	Method: EPA 6 Method/Date: E lytical Services	PA 1311; 1	1/20/22 12:		3010			
Arsenic	0.034 U	mg/L	0.10	0.034	1	11/21/22 11:54	11/22/22 06:04	7440-38-2	
Barium	0.029 1	mg/L	0.10	0.0084	1	11/21/22 11:54	11/22/22 06:04		
Cadmium	0.0033 U	mg/L	0.010	0.0033	1	11/21/22 11:54	11/22/22 06:04		
Chromium	0.017 U	mg/L	0.050	0.017	1	11/21/22 11:54	11/22/22 06:04		
Copper	0.026 U	mg/L	0.050	0.026	1	11/21/22 11:54	11/22/22 06:04		
Lead	0.021 U	mg/L	0.10	0.021	1	11/21/22 11:54	11/22/22 06:04		
Selenium	0.039 U	mg/L	0.15	0.039	1	11/21/22 11:54	11/22/22 06:04		
Silver	0.010 U	mg/L	0.050	0.010	1	11/21/22 11:54	11/22/22 06:04		
7470 Mercury, TCLP	Leachate	Method: EPA 7 Method/Date: E lytical Services	PA 1311; 1	1/20/22 12:		7470			
Mercury	0.00090 U	mg/L	0.0020	0.00090	1	11/21/22 12:13	11/22/22 10:14	7439-97-6	
7471 Mercury	•	Method: EPA 7 lytical Services	•		od: EPA	7471			
Mercury	0.021	mg/kg	0.014	0.0068	1	11/18/22 09:16	11/21/22 11:39	7439-97-6	
8270 MSSV Short List Microwave	•	Method: EPA 8 lytical Services			od: EPA	3546			
Acenaphthene	0.076 U	mg/kg	0.17	0.076	1	11/17/22 17.16	11/18/22 17:12	83-32-9	P1
Acenaphthylene	0.075 U	mg/kg	0.17	0.025	1		11/18/22 17:12		P1
Anthracene	0.025 U 0.022 U	mg/kg	0.18	0.025	1		11/18/22 17:12		P1
									P1 P1
Benzo(a)anthracene	0.063 I	mg/kg	0.16	0.021	1	11/17/22 17:16	11/18/22 17:12	00-00-3	FI

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

 Sample:
 LAKE 8 Comp 659
 Lab ID:
 35760275009
 Collected:
 11/15/22 11:45
 Received:
 11/16/22 15:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Short List Microwave	Analytical	Method: EPA	8270 Prepa	ration Meth	od: EP/	A 3546			
	Pace Anal	ytical Service	s - Ormond E	Beach					
Benzo(a)pyrene	0.067 I	mg/kg	0.16	0.040	1	11/17/22 17:16	11/18/22 17:12	50-32-8	P1
Benzo(b)fluoranthene	0.10 I	mg/kg	0.16	0.043	1	11/17/22 17:16	11/18/22 17:12	205-99-2	P1
Benzo(g,h,i)perylene	0.049 I	mg/kg	0.16	0.040	1	11/17/22 17:16	11/18/22 17:12	191-24-2	P1
Benzo(k)fluoranthene	0.043 U	mg/kg	0.16	0.043	1	11/17/22 17:16	11/18/22 17:12	207-08-9	P1
Chrysene	0.074 I	mg/kg	0.16	0.021	1	11/17/22 17:16	11/18/22 17:12	218-01-9	P1
Dibenz(a,h)anthracene	0.037 U	mg/kg	0.16	0.037	1	11/17/22 17:16	11/18/22 17:12	53-70-3	P1
Fluoranthene	0.13 I	mg/kg	0.16	0.052	1	11/17/22 17:16	11/18/22 17:12	206-44-0	P1
Fluorene	0.057 U	mg/kg	0.18	0.057	1	11/17/22 17:16	11/18/22 17:12	86-73-7	P1
Indeno(1,2,3-cd)pyrene	0.039 I	mg/kg	0.16	0.037	1	11/17/22 17:16	11/18/22 17:12	193-39-5	P1
1-Methylnaphthalene	0.027 U	mg/kg	0.19	0.027	1	11/17/22 17:16	11/18/22 17:12	90-12-0	P1
2-Methylnaphthalene	0.025 U	mg/kg	0.19	0.025	1	11/17/22 17:16	11/18/22 17:12	91-57-6	P1
Naphthalene	0.057 U	mg/kg	0.17	0.057	1	11/17/22 17:16	11/18/22 17:12	91-20-3	P1
Phenanthrene	0.023 U	mg/kg	0.16	0.023	1	11/17/22 17:16	11/18/22 17:12	85-01-8	P1
Pyrene	0.094 I	mg/kg	0.16	0.021	1	11/17/22 17:16	11/18/22 17:12	129-00-0	P1
Surrogates									
Nitrobenzene-d5 (S)	46	%	24-98		1	11/17/22 17:16	11/18/22 17:12	4165-60-0	
2-Fluorobiphenyl (S)	69	%	29-101		1	11/17/22 17:16	11/18/22 17:12	321-60-8	
p-Terphenyl-d14 (S)	75	%	29-112		1	11/17/22 17:16	11/18/22 17:12	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	s - Ormond E	Beach					
Percent Moisture	27.9	%	0.10	0.10	1		11/17/22 11:37		
Total Nitrogen Calculation	Analytical	Method: TKN	I+NOx Calcul	ation					
C C	Pace Anal	ytical Service	es - Ormond E	Beach					
Total Nitrogen Soil	755	mg/kg	27.7	15.3	1		12/05/22 15:17		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA	351.2 Prepa	aration Meth	nod: EF	PA 351.2			
···· ··· ··· · · ··· · · ··· · · · · ·	-		es - Ormond E						
Nitrogen, Kjeldahl, Total	755	mg/kg	138	76.1	1	11/21/22 10:59	11/25/22 14:49	7727-37-9	
353.2 Nitrogen, NOx			353.2 Prepa s - Ormond E		nod: EF	PA 353.2			
Nitrogen, NO2 plus NO3	0.35 U	mg/kg	0.69	0.35	1	11/19/22 20:30	11/19/22 22:14		
365.4 Phosphorus, Total	Analytical	Method: EPA	365.4 Prepa	aration Meth	nod: EF	PA 365.4			
-	Pace Anal	ytical Service	s - Ormond E	Beach					
Phosphorus, Total (as P)	140	mg/kg	41.5	36.0	1	11/21/22 10:59	11/25/22 14:49	7723-14-0	

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project:	City of	Naples Lake	Restoratio														
Pace Project No .:	357602	275															
QC Batch:	87334	44		Analy	Analysis Method:			EPA 7470									
QC Batch Method: EPA 7470					Analysis Description:			7470 Mercury TCLP									
					Laboratory:			Pace Analytical Services - Ormond Beach									
Associated Lab San	nples:		01, 3576027500 08, 3576027500	,	75003, 35	760275004,	357602750	05, 35760	275006, 35	760275007	7,						
METHOD BLANK:	480658	85			Matrix: \	Nater											
Associated Lab San	nples:		01, 3576027500 08, 3576027500	,	75003, 35	760275004,	357602750	05, 35760	275006, 35	760275007	7,						
				Blai	nk	Reporting											
Parameter			Units	Res	ult	Limit	MDL		Analyzed		Qualifiers						
Mercury			mg/L	0.000	090 U	0.0002	20 0.0	00090 1	1/22/22 09:	31							
LABORATORY CON	NTROL	SAMPLE:	4807262														
				Spike	L	CS	LCS	% F	Rec								
Parameter		Units	Conc.	Re	esult	% Rec	Lim	its (Qualifiers								
Mercury			mg/L	0.00)2	0.0020	9	8	80-120		_						
MATRIX SPIKE & M	IATRIX	SPIKE DUPI	_ICATE: 4807	263		480726	4										
				MS	MSD												
_			35759656001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max					
Parameter	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual				
Mercury		mg/L	0.0012 I	0.02	0.02	0.019	0.019	90	90	75-125	1	20					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Pace Project No.:	City of Naples 35760275	Lake Restoratio												
QC Batch:	872727		Analy	ysis Metho	d:	EPA 7471								
QC Batch Method:	Analy	Analysis Description:			7471 Mercury									
			•	ratory:		Pace Analy	-	es - Ormon	d Beach					
Associated Lab Sar		275001, 3576027500 275008, 3576027500	02, 3576027	,		,				,				
METHOD BLANK:	4804242			Matrix: S	olid									
Associated Lab Sar		275001, 3576027500 275008, 3576027500	,	75003, 357	60275004,	357602750	05, 357602	275006, 357	760275007	,				
			Blai	nk	Reporting									
Parameter Units			Res	Result L		MDL		Analyzed		Qualifiers				
Mercury mg/		mg/kg	0.0	047 U	0.009	0.0047		11/21/22 10:45						
LABORATORY COI	NTROL SAMPLI	E: 4804243												
			Spike	LC	CS	LCS	% R	ec						
Paran	neter	Units	Conc.	Re	sult	% Rec	Limi	ts (Qualifiers					
Mercury		mg/kg	0.09	93	0.096	10	3 8	30-120		_				
MATRIX SPIKE & M	IATRIX SPIKE [OUPLICATE: 4804	1244		4804245	5								
			MS	MSD										
_		35759993001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	. .		
Parameter	r U	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual		
Mercury	m	g/kg 0.012	0.12	0.11	0.14	0.12	105	100	80-120	13	20			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:	City of	Naples Lake	Restoratio										
Pace Project No.:	35760	275											
QC Batch:	8738	31		Analy	Analysis Method:								
QC Batch Method:	EPA					ription:	6010 MET S	Solid					
				-	ratory:		Pace Analyt		ces - Ormon	d Beach			
Associated Lab Sar	noles:	357602750	01, 3576027500			760275004.	-						
	npiee.		08, 3576027500		,			,			,		
METHOD BLANK:		Matrix: Solid											
Associated Lab Sar	mples:		01, 3576027500 08, 3576027500		5003, 35		357602750	05, 35760	275006, 357	760275007	,		
				Blank		Reporting							
Parar	neter		Units	Resu	ult	Limit	MDI	-	Analyzed	Qı	Qualifiers		
Arsenic			mg/kg	0	.25 U	0.5	50	0.25 1	1/22/22 21:	43			
Barium			mg/kg	0.0	083 U	0.8	50		1/22/22 21:				
Cadmium			mg/kg	0.0	025 U	0.05	50	0.025 1	1/22/22 21:	43			
Chromium			mg/kg).12 U	0.2		-	1/22/22 21:	-			
Copper			mg/kg).12 U	0.2			1/22/22 21:				
ead			mg/kg).25 U	0.5			1/22/22 21:				
Selenium			mg/kg).37 U	0.7			1/22/22 21:				
Silver			mg/kg	0.0	055 U	0.2	25	0.055 1	1/22/22 21:4	43			
LABORATORY CO	NTROL	SAMPLE:	4809687										
				Spike	L	CS	LCS	% F	Rec				
Parameter			Units	Conc.	Re	esult	% Rec	Lim	nits (Qualifiers			
Arsenic			mg/kg		8	11.1	94	1	80-120		_		
Barium			mg/kg	11.	8	12.4	105	5	80-120				
Cadmium			mg/kg	1.	2	1.2	99	9	80-120				
Chromium			mg/kg	11.	8	12.3	104	1	80-120				
Copper			mg/kg	11.	8	12.0	102	2	80-120				
ead			mg/kg	11.	8	11.8	100)	80-120				
Selenium			mg/kg	11.		10.2	86		80-120				
Silver			mg/kg	1.	2	1.2	99	9	80-120				
MATRIX SPIKE & N	IATRIX	SPIKE DUPL	ICATE: 4809	688		480968	9						
				MS	MSD								
			35760275001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
rsenic		mg/kg	5.2	25.1	27.1	28.3	28.9	92	2 88	75-125	2	20	
Barium		mg/kg	1.3	25.1	27.1			109	106	75-125	4		
admium		mg/kg	0.30	2.6	2.7		3.1	97		75-125	14		
Chromium		mg/kg	2.6	25.1	27.1	28.9	30.0	105	5 101	75-125	4		
Copper		mg/kg	114	25.1	27.1	136	107	86	6 -27	75-125	24	20	J(M1) J(R1)
ead		mg/kg	2.8	25.1	27.1	27.5	28.8	98	96	75-125	4	20	
Solonium		ma/ka	0.66.11	25.1	27.1	21.9	22.4	96	95	75 125	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

27.1

2.7

21.8

2.5

23.4

2.7

86

99

85

99

75-125

75-125

7 20

7

20

0.66 U

0.097 U

mg/kg

mg/kg

25.1

2.6

REPORT OF LABORATORY ANALYSIS

Selenium

Silver

Project:	City of	Naples Lake F	Restoratio										
Pace Project No.:	35760	275											
QC Batch:	8733	99		Analy	ysis Meth	od:	EPA 6010						
QC Batch Method:	EPA	3010			, ysis Desc		6010 MET 1	TCLP					
					oratory:		Pace Analy	ical Servic	es - Ormon	d Beach			
Associated Lab Sar	nples:	,				,				7,			
METHOD BLANK:	48065	85			Matrix: V	Nater							
Associated Lab Sar	nples:		1, 3576027500 8, 3576027500		75003, 35	760275004,	357602750	05, 357602	275006, 35	760275007	7,		
				Blai	nk	Reporting							
Parar	neter		Units	Res	ult	Limit	MD	L	Analyzed	Qı	ualifiers	;	
Arsenic			mg/L	0.0	034 U	0.01	0 0	0.0034 1	1/22/22 04:	29			
Barium			mg/L	0.	0019 I	0.01	0 0.		1/22/22 04:				
Cadmium			mg/L	0.00	033 U	0.001	0 0.	00033 1	1/22/22 04:	29			
Chromium			mg/L	0.0	017 U	0.005	0 0	0.0017 1	1/22/22 04:	29			
Copper			mg/L	0.0	026 U	0.005	0 0	0.0026 1	1/22/22 04:	29			
_ead			mg/L	0.0	021 U	0.01	0 0	0.0021 1	1/22/22 04:	29			
Selenium			mg/L	(0.010 I	0.01	5 (0.0039 1	1/22/22 04:	29			
Silver			mg/L	0.0	010 U	0.005	0 (0.0010 1 ⁻	1/22/22 04:	29			
LABORATORY COI	NIROL	SAMPLE: 48	307474	Spike	1	CS	LCS	% R	ec				
Parar	neter		Units	Conc.		esult	% Rec	Lim		Qualifiers			
Arsenic			mg/L	0.2	25	0.25	10	1	80-120		_		
Barium			mg/L	0.2	25	0.27	10	9	80-120				
Cadmium			mg/L	0.02	25	0.023	9	1 8	80-120				
Chromium			mg/L	0.2	25	0.25	10	0	80-120				
Copper			mg/L	0.2	25	0.28	11	3	80-120				
Lead			mg/L	0.2	25	0.22	9	0	80-120				
Selenium			mg/L	0.2		0.28	11		80-120				
Silver			mg/L	0.02	25	0.028	11	1	80-120				
				475		4007472	<u>,</u>						
MATRIX SPIKE & N	IAIRIX	SPIKE DUPLI	CATE: 4807	475 MS	MSD	4807476)						
		3	5760275001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic		mg/L	0.034 U	2.5	2.5	5 2.4	2.4	94	95	75-125	1	20	
Barium		mg/L	0.011 I	2.5	2.5	5 2.7	2.8	109	111	75-125	1	20	
Cadmium		mg/L	0.0033 U	0.25	0.25	5 0.24	0.24	95	96	75-125	1	20	
Chromium		mg/L	0.017 U	2.5	2.5	5 2.5	2.5	100	102	75-125	2	20	
N		- /	0 000 11	~ -			~ ~ ~	400	400	75 405			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

2.5

2.5

2.5

0.25

2.6

2.4

2.4

0.25

2.6

2.5

2.5

0.25

102

98

97

100

103

98

98

75-125

75-125

75-125

101 75-125

2 20

1 20

1 20

1 20

REPORT OF LABORATORY ANALYSIS

mg/L

mg/L

mg/L

mg/L

0.026 U

0.021 U

0.039 U

0.010 U

2.5

2.5

2.5

0.25

Copper

Selenium

Lead

Silver

QUALITY CONTROL DATA

Project: City c	f Naples Lake Restoratio					
Pace Project No.: 3576	0275					
QC Batch: 872	578	Analysis Meth	od: EF	PA 8270		
QC Batch Method: EPA	3546	Analysis Desc	ription: 82	70 Solid MSSV N	/licrowave Short Sp	oike
		Laboratory:			vices - Ormond Be	
Associated Lab Samples:	35760275001, 35760275002 35760275008, 35760275009	, 35760275003, 35		,		
METHOD BLANK: 4803	221	Matrix: S	Solid			
Associated Lab Samples:	35760275001, 35760275002 35760275008, 35760275009		760275004, 35	5760275005, 357	60275006, 357602	75007,
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1-Methylnaphthalene	mg/kg	0.0056 U	0.040	0.0056	11/18/22 09:46	
2-Methylnaphthalene	mg/kg	0.0053 U	0.039	0.0053	11/18/22 09:46	
Acenaphthene	mg/kg	0.016 U	0.036	0.016	11/18/22 09:46	
Acenaphthylene	mg/kg	0.0053 U	0.034	0.0053	11/18/22 09:46	
Anthracene	mg/kg	0.0046 U	0.036	0.0046	11/18/22 09:46	
Benzo(a)anthracene	mg/kg	0.0045 U	0.034	0.0045	11/18/22 09:46	
Benzo(a)pyrene	mg/kg	0.0084 U	0.034	0.0084	11/18/22 09:46	
Benzo(b)fluoranthene	mg/kg	0.0090 U	0.034	0.0090	11/18/22 09:46	
Benzo(g,h,i)perylene	mg/kg	0.0085 U	0.034	0.0085	11/18/22 09:46	
Benzo(k)fluoranthene	mg/kg	0.0090 U	0.034	0.0090	11/18/22 09:46	
Chrysene	mg/kg	0.0045 U	0.034	0.0045	11/18/22 09:46	
Dibenz(a,h)anthracene	mg/kg	0.0078 U	0.034	0.0078	11/18/22 09:46	
Fluoranthene	mg/kg	0.011 U	0.034	0.011	11/18/22 09:46	
Fluorene	mg/kg	0.012 U	0.037	0.012	11/18/22 09:46	
Indeno(1,2,3-cd)pyrene	mg/kg	0.0077 U	0.034	0.0077	11/18/22 09:46	
Naphthalene	mg/kg	0.012 U	0.035	0.012	11/18/22 09:46	
Phenanthrene	mg/kg	0.0048 U	0.034	0.0048	11/18/22 09:46	
Pyrene	mg/kg	0.0045 U	0.034	0.0045	11/18/22 09:46	
2-Fluorobiphenyl (S)	%	68	29-101		11/18/22 09:46	
Nitrobenzene-d5 (S)	%	65	24-98		11/18/22 09:46	
p-Terphenyl-d14 (S)	%	87	29-112		11/18/22 09:46	

LABORATORY CONTROL SAMPLE: 4803222

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	mg/kg	1.7	1.2	73	38-115	
2-Methylnaphthalene	mg/kg	1.7	1.2	70	37-115	
Acenaphthene	mg/kg	1.7	1.1	68	30-127	
Acenaphthylene	mg/kg	1.7	1.2	70	29-129	
Anthracene	mg/kg	1.7	1.2	73	37-126	
Benzo(a)anthracene	mg/kg	1.7	1.3	77	37-130	
Benzo(a)pyrene	mg/kg	1.7	1.4	82	39-128	
Benzo(b)fluoranthene	mg/kg	1.7	1.2	71	38-128	
Benzo(g,h,i)perylene	mg/kg	1.7	1.3	80	34-136	
Benzo(k)fluoranthene	mg/kg	1.7	1.3	81	39-133	
Chrysene	mg/kg	1.7	1.3	81	39-125	
Dibenz(a,h)anthracene	mg/kg	1.7	1.3	81	37-127	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

LABORATORY CONTROL SAMPLE: 4803222

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Fluoranthene	mg/kg	1.7	1.4	82	39-130	
luorene	mg/kg	1.7	1.2	74	35-125	
ideno(1,2,3-cd)pyrene	mg/kg	1.7	1.2	74	35-133	
aphthalene	mg/kg	1.7	1.1	67	36-115	
enanthrene	mg/kg	1.7	1.2	74	35-128	
ene	mg/kg	1.7	1.3	77	37-132	
luorobiphenyl (S)	%			71	29-101	
robenzene-d5 (S)	%			65	24-98	
Terphenyl-d14 (S)	%			84	29-112	

4803224

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4803223

Parameter	3 Units	5757563001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1-Methylnaphthalene	mg/kg	0.0059 U	1.8	1.8	1.2	1.2	70	67	38-115	5		
2-Methylnaphthalene	mg/kg	0.0056 U	1.8	1.8	1.2	1.1	68	65	37-115	5	-	
Acenaphthene	mg/kg	0.017 U	1.8	1.8	1.2	1.2	69	66	30-127	4	40	
Acenaphthylene	mg/kg	0.0056 U	1.8	1.8	1.2	1.2	70	67	29-129	4	40	
Anthracene	mg/kg	0.0049 U	1.8	1.8	1.3	1.3	75	72	37-126	4	40	
Benzo(a)anthracene	mg/kg	0.0048 U	1.8	1.8	1.4	1.3	77	74	37-130	3	40	
Benzo(a)pyrene	mg/kg	0.0089 U	1.8	1.8	1.4	1.4	80	78	39-128	2	40	
Benzo(b)fluoranthene	mg/kg	0.0095 U	1.8	1.8	1.2	1.2	68	67	38-128	2	40	
Benzo(g,h,i)perylene	mg/kg	0.0090 U	1.8	1.8	1.5	1.4	85	80	34-136	5	40	
Benzo(k)fluoranthene	mg/kg	0.0095 U	1.8	1.8	1.4	1.3	78	76	39-133	2	40	
Chrysene	mg/kg	0.0048 U	1.8	1.8	1.4	1.4	79	77	39-125	3	40	
Dibenz(a,h)anthracene	mg/kg	0.0083 U	1.8	1.8	1.5	1.4	84	81	37-127	4	40	
Fluoranthene	mg/kg	0.012 U	1.8	1.8	1.4	1.3	79	76	39-130	4	40	
Fluorene	mg/kg	0.013 U	1.8	1.8	1.3	1.3	75	71	35-125	5	40	
Indeno(1,2,3-cd)pyrene	mg/kg	0.0082 U	1.8	1.8	1.4	1.3	78	75	35-133	3	40	
Naphthalene	mg/kg	0.013 U	1.8	1.8	1.1	1.1	65	62	36-115	5	40	
Phenanthrene	mg/kg	0.0051 U	1.8	1.8	1.4	1.3	76	73	35-128	4	40	
Pyrene	mg/kg	0.0048 U	1.8	1.8	1.3	1.3	76	73	37-132	4	40	
2-Fluorobiphenyl (S)	%						73	70	29-101			
Nitrobenzene-d5 (S)	%						62	59	24-98			
p-Terphenyl-d14 (S)	%						82	78	29-112			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

	of Naples Lake 60275	Residialio										
QC Batch: 87	2292		Analys	is Method	d:	-L-PRO						
QC Batch Method: El	PA 3546		Analys	is Descri	ption:		I					
			Labora	atory:		Pace Analyt	ical Servic	ces - Ormon	d Beach			
Associated Lab Samples		001, 3576027500 008, 3576027500	,	003, 3570	60275004,	3576027500	05, 35760	275006, 357	760275007	,		
METHOD BLANK: 480	1613		Ν	Aatrix: So	olid							
Associated Lab Samples		001, 3576027500 008, 3576027500		003, 357	60275004,	3576027500	05, 35760	275006, 357	760275007	,		
			Blank	: I	Reporting							
Parameter		Units	Resul	t	Limit	MDI	-	Analyzed	Qu	ualifiers		
Petroleum Range Organ	cs	mg/kg	5	5.2 U	6.	0	5.2 1	1/19/22 00:	57			
· · · · · · · · · · · · · · · · · · ·		00				•						
0 0		%		97	42-15	9	1	1/19/22 00:	57			
N-Pentatriacontane (S) o-Terphenyl (S)		% %		97 82	42-15 66-13			1/19/22 00: 1/19/22 00:				
N-Pentatriacontane (S) o-Terphenyl (S)		%		-	-							
N-Pentatriacontane (S) o-Terphenyl (S)			Spike	82	66-13	6	1	1/19/22 00::				
N-Pentatriacontane (S) o-Terphenyl (S)		%	Spike Conc.	-	66-13			1/19/22 00:				
N-Pentatriacontane (S) o-Terphenyl (S) LABORATORY CONTRO Parameter	DL SAMPLE:	% 4801614	•	82 LC Res	66-13	LCS	1 % R 	1/19/22 00:	57			
N-Pentatriacontane (S) o-Terphenyl (S) LABORATORY CONTRO Parameter Petroleum Range Organ	DL SAMPLE:	% 4801614 Units	Conc.	82 LC Res	66-13 S Sult	6 LCS % Rec	1 % R 	1/19/22 00:: Rec its (57			
N-Pentatriacontane (S) o-Terphenyl (S) LABORATORY CONTRO	DL SAMPLE:	% 4801614 Units mg/kg	Conc.	82 LC Res	66-13 S Sult	6 LCS % Rec 99	1 % R 2 7	1/19/22 00:: Rec its (65-119	57			
N-Pentatriacontane (S) o-Terphenyl (S) LABORATORY CONTRO Parameter Petroleum Range Organ N-Pentatriacontane (S)	DL SAMPLE:	% 4801614 Units mg/kg % %	Conc200	82 LC Res	66-13 S Sult	6 LCS % Rec 99 107 83	1 % R 2 7	1/19/22 00:: Rec its 65-119 42-159	57	_		
N-Pentatriacontane (S) o-Terphenyl (S) LABORATORY CONTRO Parameter Petroleum Range Organ N-Pentatriacontane (S) o-Terphenyl (S)	DL SAMPLE:	% 4801614 Units mg/kg % %		82 LC Res	66-13 S Sult 197	6 LCS % Rec 99 107 83	1 % R 2 7	1/19/22 00:: Rec its 65-119 42-159	57	_		
N-Pentatriacontane (S) o-Terphenyl (S) LABORATORY CONTRO Parameter Petroleum Range Organ N-Pentatriacontane (S) o-Terphenyl (S)	DL SAMPLE:	% 4801614 Units mg/kg % %	Conc. 200 615 MS	82 LC Res	66-13 S Sult 197	6 LCS % Rec 99 107 83	1 % R 2 7	1/19/22 00:: Rec its 65-119 42-159	57	_	Max	
N-Pentatriacontane (S) o-Terphenyl (S) LABORATORY CONTRO Parameter Petroleum Range Organ N-Pentatriacontane (S) o-Terphenyl (S)	DL SAMPLE:	% 4801614 Units mg/kg % %	615 Spike	82 LC Res	66-13 S Sult 197 4801616	6 LCS % Rec 99 107 83	1 % R 	1/19/22 00: Rec its 65-119 42-159 66-136	57 Qualifiers		Max RPD	Qual
N-Pentatriacontane (S) o-Terphenyl (S) LABORATORY CONTRO Parameter Petroleum Range Organ N-Pentatriacontane (S) o-Terphenyl (S) MATRIX SPIKE & MATR Parameter	DL SAMPLE: cs X SPIKE DUPI	% 4801614 Units mg/kg % % LICATE: 4801 35760004006 Result	615 Spike	82 LC Res MSD Spike	66-13 S Sult 197 4801616 MS	6 LCS % Rec 99 107 83 MSD	1 % R Lim 7 3 MS	1/19/22 00: Rec 65-119 42-159 66-136 MSD % Rec	57 Qualifiers % Rec Limits		RPD	Qual
N-Pentatriacontane (S) o-Terphenyl (S) LABORATORY CONTRO Parameter Petroleum Range Organ N-Pentatriacontane (S) o-Terphenyl (S) MATRIX SPIKE & MATR	DL SAMPLE: cs X SPIKE DUPI	% 4801614 Units mg/kg % % LICATE: 4801 35760004006 Result	Conc. 200 615 MS Spike Conc.	82 LC Res MSD Spike Conc.	66-13	LCS % Rec 99 107 83 MSD Result	1 % R Lim 7 3 MS % Rec	1/19/22 00: Rec 65-119 42-159 66-136 MSD % Rec 94	57 Qualifiers % Rec Limits 39-181		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 0	City of Naples Lake	Restoratio							
Pace Project No.: 3	35760275								
QC Batch:	872308		Analysis Meth	od:	ASTM D2974-	87			
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Pe	rcent N	Noisture		
			Laboratory:		Pace Analytica	al Servi	ices - Orn	nond l	Beach
Associated Lab Samp	oles: 3576027500	1, 357602750	02, 35760275003, 35	760275004					
SAMPLE DUPLICATE	E: 4801661								
			35756946003	Dup			Max		
Parame	eter	Units	Result	Result	RPD		RPD		Qualifiers
Percent Moisture		%	85.4	86	.3	1		10	
SAMPLE DUPLICATE	E: 4801662								
			35759237005	Dup			Max		
Parame	eter	Units	Result	Result	RPD		RPD		Qualifiers
Percent Moisture		%	12.9	13	.0	0		10	
SAMPLE DUPLICATE	E: 4801663								
			35759237015	Dup			Max		
Parame	eter	Units	Result	Result	RPD		RPD		Qualifiers
Percent Moisture		%	13.6	12	.5	9		10	
SAMPLE DUPLICATE	E: 4801664								
_			35759656001	Dup			Max		0 11/1
Parame	eter	Units	Result	Result	RPD		RPD		Qualifiers
Percent Moisture		%	17.4	17	.6	1		10	
SAMPLE DUPLICATE	E: 4801665								
_			35760275004	Dup			Max		0 11/1
Parame	eter	Units	Result	Result	RPD		RPD		Qualifiers
Percent Moisture		%	63.6	69	6	9		10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	City of Naples Lake	Restoratio							
Pace Project No.:	35760275								
QC Batch:	872417		Analysis Meth	od:	ASTM D2974-87				
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Perce	ent Moisture			
			Laboratory:		Pace Analytical S	Services - Or	mond	Beach	
Associated Lab Sar	mples: 357602750	05, 357602750	06, 35760275007, 35	760275008,	35760275009				
SAMPLE DUPLICA	TE: 4802156								
			35756928001	Dup		Max			
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture		%	80.9	79	0 2	2	10		
SAMPLE DUPLICA	TE: 4802158								
			35760004006	Dup		Max			
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture		%	13.5	13	8 2	2	10		
SAMPLE DUPLICA	TE: 4802159								
			35760275005	Dup		Max			
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture		%	59.4	58	2 2	2	10		
SAMPLE DUPLICA	TE: 4802193								
			35759993001	Dup		Max			
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	City of 357602	Naples Lake I 275	Restoratio										
QC Batch:	8732	13		Anal	ysis Metho	d:	EPA 351.2						
QC Batch Method:	EPA :	351.2		Anal	, ysis Descri	ption:	351.2 TKN						
					oratory:		Pace Analyt	ical Servi	ces - Ormor	nd Beach			
Associated Lab Sar	nples:		1, 3576027500 8, 3576027500	,	75003, 357	60275004,	357602750	05, 35760	275006, 35	760275007	7,		
METHOD BLANK:	480688	33			Matrix: So	olid							
Associated Lab Sar	nples:		1, 3576027500 8, 3576027500	,	75003, 357	60275004,	357602750	05, 35760	275006, 35	760275007	7,		
				Bla	nk	Reporting							
Parar	neter		Units	Res	ult	Limit	MDI	L	Analyzed	Qı	ualifiers	;	
Nitrogen, Kjeldahl,	Total		mg/kg		51.6 U	93.	8	51.6	11/25/22 14:	33			
LABORATORY CO	NTROL	SAMPLE: 4	806884										
				Spike	LC	S	LCS	% F	Rec				
Parar	neter		Units	Conc.	Res	sult	% Rec	Lin	nits	Qualifiers			
Nitrogen, Kjeldahl,	Total		mg/kg	336	50	3210	90	6	90-110				
MATRIX SPIKE & M	IATRIX	SPIKE DUPLI	CATE: 4806			4806885	5						
				MS	MSD					_			
Paramete	r	: Units	35760275001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
													Gudi
Nitrogen, Kjeldahl, 1	lotal	mg/kg	983	7290	7310	8010	7940	96	6 95	90-110	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	City of	Naples Lake	Restoratio											
Pace Project No.:	357602	275												
QC Batch:	87313	38		Anal	ysis Metho	d:	EPA 353.2							
QC Batch Method:	EPA 3	353.2		Anal	Analysis Description:			353.2 Nitrogen, NOx						
					oratory:		Pace Analy	ical Servic	es - Ormon	d Beach				
Associated Lab Samples: 35760275001, 35760275002, 3 35760275008, 35760275009					75003, 357	60275004,	357602750	05, 357602	275006, 35	760275007	7,			
METHOD BLANK:	480650)8			Matrix: So	olid								
Associated Lab Sam	nples:)1, 3576027500)8, 3576027500		75003, 357	60275004,	357602750	05, 357602	275006, 35	760275007	,			
				Bla	nk	Reporting								
Param	neter		Units	Res	ult	Limit	MD	L	Analyzed	Qı	ualifiers	;		
Nitrogen, NO2 plus	NO3		mg/kg	(0.25 U	0.5	50	0.25 1	1/19/22 21:	58				
LABORATORY CON		SAMPLE: 4	1806509											
				Spike	LC	S	LCS	% R	ec					
Param	neter		Units	Conc.	Res	sult	% Rec	Lim	its (Qualifiers				
Nitrogen, NO2 plus	NO3		mg/kg	2	20	19.9	10	0	90-110		_			
MATRIX SPIKE & M	IATRIX S	SPIKE DUPL	ICATE: 4806	-		4806510	0							
				MS	MSD									
Parameter		Units	35760275001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual	
Nitrogen, NO2 plus I		mg/kg		36.5	36.5	33.8	33.5	93	92	80-120	1	20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	City of	Naples Lake	Restoratio										
Pace Project No.:	357602	275											
QC Batch:	8732	12		Analy	sis Metho	d:	EPA 365.4						
QC Batch Method:	EPA	365.4		Analy	/sis Descri	ption:	365.4 Total	Phosphor	us				
				Labo	ratory:		Pace Analy	tical Servi	ces - Ormon	nd Beach			
Associated Lab Sam	nples:		01, 3576027500 08, 3576027500	,	5003, 357	60275004,	357602750	05, 35760	275006, 35	760275007	7,		
METHOD BLANK:	48068	77			Matrix: So	olid							
Associated Lab Sam	nples:		01, 3576027500 08, 3576027500		5003, 357	60275004,	357602750	05, 35760	275006, 35	760275007	7,		
				Blar		Reporting							
Param	neter		Units	Res	ult	Limit	MD	L	Analyzed	Qı	ualifiers		
Phosphorus, Total (a	as P)		mg/kg	2	24.4 U	28.	1	24.4 1	1/25/22 14:	50			
LABORATORY CON	NTROL	SAMPLE:	4806878	Spike	LC	· c	LCS	% F	Rec				
Param	neter		Units	Conc.	Res	-	% Rec	Lin		Qualifiers			
Phosphorus, Total (a	as P)		mg/kg	67	3	675	10	0	90-110				
MATRIX SPIKE & M	IATRIX	SPIKE DUPL	ICATE: 4806	880		4806879)						
				MS	MSD								
Damasata		11-1-	35760275001	Spike	Spike	MS	MSD	MS	MSD	% Rec	000	Max	0
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Phosphorus, Total (a	as P)	mg/kg	59.4	1460	1460	1560	1560	103	3 102	80-120	0	20	
MATRIX SPIKE & M	IATRIX	SPIKE DUPL	ICATE: 4806	882 MS	MSD	4806887	l						
			35760398001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Phosphorus, Total (a	as P)	mg/kg	20100	90500	90700	115000	114000	104	104	80-120	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: City of Naples Lake Restoratio

Pace Project No.: 35760275

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- U Compound was analyzed for but not detected.
- J(M1) Estimated Value. Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- J(R1) Estimated Value. RPD value was outside control limits.
- P1 Routine initial sample volume or weight was not used for extraction, resulting in elevated reporting limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	City of Naples Lake Restoratio
Pace Project No .:	35760275

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
35760275001	LAKE 9 Comp 134	EPA 3546	872292	FL-PRO	872574
35760275002	LAKE 9 Comp 256	EPA 3546	872292	FL-PRO	872574
35760275003	LAKE 9 Comp 8 11 12 14	EPA 3546	872292	FL-PRO	872574
35760275004	LAKE 9 Comp 17 18 20 21	EPA 3546	872292	FL-PRO	872574
35760275005	LAKE 9 Comp 15 16 19 22	EPA 3546	872292	FL-PRO	872574
35760275006	LAKE 9 Comp 7 9 10 13	EPA 3546	872292	FL-PRO	872574
35760275007	LAKE 8 Comp 137	EPA 3546	872292	FL-PRO	872574
35760275008	LAKE 8 Comp 248	EPA 3546	872292	FL-PRO	872574
5760275009	LAKE 8 Comp 659	EPA 3546	872292	FL-PRO	872574
5760275001	LAKE 9 Comp 134	EPA 3050	873831	EPA 6010	873906
5760275002	LAKE 9 Comp 256	EPA 3050	873831	EPA 6010	873906
5760275003	LAKE 9 Comp 8 11 12 14	EPA 3050	873831	EPA 6010	873906
5760275004	LAKE 9 Comp 17 18 20 21	EPA 3050	873831	EPA 6010	873906
5760275005	LAKE 9 Comp 15 16 19 22	EPA 3050	873831	EPA 6010	873906
5760275006	LAKE 9 Comp 7 9 10 13	EPA 3050	873831	EPA 6010	873906
5760275007	LAKE 8 Comp 137	EPA 3050	873831	EPA 6010	873906
5760275008	LAKE 8 Comp 248	EPA 3050	873831	EPA 6010	873906
5760275009	LAKE 8 Comp 659	EPA 3050	873831	EPA 6010	873906
5760275001	LAKE 9 Comp 134	EPA 3010	873399	EPA 6010	873479
5760275002	LAKE 9 Comp 256	EPA 3010	873399	EPA 6010	873479
5760275003	LAKE 9 Comp 8 11 12 14	EPA 3010	873399	EPA 6010	873479
5760275004	LAKE 9 Comp 17 18 20 21	EPA 3010	873399	EPA 6010	873479
5760275005	LAKE 9 Comp 15 16 19 22	EPA 3010	873399	EPA 6010	873479
5760275006	LAKE 9 Comp 7 9 10 13	EPA 3010	873399	EPA 6010	873479
5760275007	LAKE 8 Comp 137	EPA 3010	873399	EPA 6010	873479
5760275008	LAKE 8 Comp 248	EPA 3010	873399	EPA 6010	873479
5760275009	LAKE 8 Comp 659	EPA 3010	873399	EPA 6010	873479
5760275001	LAKE 9 Comp 134	EPA 7470	873344	EPA 7470	873493
5760275002	LAKE 9 Comp 256	EPA 7470	873344	EPA 7470	873493
5760275003	LAKE 9 Comp 8 11 12 14	EPA 7470	873344	EPA 7470	873493
5760275004	LAKE 9 Comp 17 18 20 21	EPA 7470	873344	EPA 7470	873493
5760275005	LAKE 9 Comp 15 16 19 22	EPA 7470	873344	EPA 7470	873493
5760275006	LAKE 9 Comp 7 9 10 13	EPA 7470	873344	EPA 7470	873493
5760275007	LAKE 8 Comp 137	EPA 7470	873344	EPA 7470	873493
5760275008	LAKE 8 Comp 248	EPA 7470	873344	EPA 7470	873493
5760275009	LAKE 8 Comp 659	EPA 7470	873344	EPA 7470	873493
5760275001	LAKE 9 Comp 134	EPA 7471	872727	EPA 7471	872784
5760275002	LAKE 9 Comp 256	EPA 7471	872727	EPA 7471	872784
5760275003	LAKE 9 Comp 8 11 12 14	EPA 7471	872727	EPA 7471	872784
5760275004	LAKE 9 Comp 17 18 20 21	EPA 7471	872727	EPA 7471	872784
5760275005	LAKE 9 Comp 15 16 19 22	EPA 7471	872727	EPA 7471	872784
5760275006	LAKE 9 Comp 7 9 10 13	EPA 7471	872727	EPA 7471	872784
5760275007	LAKE 8 Comp 137	EPA 7471	872727	EPA 7471	872784
5760275008	LAKE 8 Comp 248	EPA 7471	872727	EPA 7471	872784
5760275009	LAKE 8 Comp 659	EPA 7471	872727	EPA 7471	872784

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:City of Naples Lake RestoratioPace Project No.:35760275

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch	
35760275002	LAKE 9 Comp 256	EPA 3546	872578	EPA 8270	872694	
35760275003	LAKE 9 Comp 8 11 12 14	EPA 3546	872578	EPA 8270	872694	
35760275004	LAKE 9 Comp 17 18 20 21	EPA 3546	872578	EPA 8270	872694	
5760275005	LAKE 9 Comp 15 16 19 22	EPA 3546	872578	EPA 8270	872694	
5760275006	LAKE 9 Comp 7 9 10 13	EPA 3546	872578	EPA 8270	872694	
5760275007	LAKE 8 Comp 137	EPA 3546	872578	EPA 8270	872694	
5760275008	LAKE 8 Comp 248	EPA 3546	872578	EPA 8270	872694	
5760275009	LAKE 8 Comp 659	EPA 3546	872578	EPA 8270	872694	
5760275001	LAKE 9 Comp 134	ASTM D2974-87	872308			
5760275002	LAKE 9 Comp 256	ASTM D2974-87	872308			
5760275003	LAKE 9 Comp 8 11 12 14	ASTM D2974-87	872308			
5760275004	LAKE 9 Comp 17 18 20 21	ASTM D2974-87	872308			
5760275005	LAKE 9 Comp 15 16 19 22	ASTM D2974-87	872417			
5760275006	LAKE 9 Comp 7 9 10 13	ASTM D2974-87	872417			
5760275007	LAKE 8 Comp 137	ASTM D2974-87	872417			
5760275008	LAKE 8 Comp 248	ASTM D2974-87	872417			
5760275009	LAKE 8 Comp 659	ASTM D2974-87	872417			
5760275001	LAKE 9 Comp 134	TKN+NOx Calculation	876735			
5760275002	LAKE 9 Comp 256	TKN+NOx Calculation	876735			
5760275003	LAKE 9 Comp 8 11 12 14	TKN+NOx Calculation	876735			
5760275004	LAKE 9 Comp 17 18 20 21	TKN+NOx Calculation	876735			
5760275005	LAKE 9 Comp 15 16 19 22	TKN+NOx Calculation	876735			
5760275006	LAKE 9 Comp 7 9 10 13	TKN+NOx Calculation	876735			
5760275007	LAKE 8 Comp 137	TKN+NOx Calculation	876735			
5760275008	LAKE 8 Comp 248	TKN+NOx Calculation	876735			
5760275009	LAKE 8 Comp 659	TKN+NOx Calculation	876735			
5760275001	LAKE 9 Comp 134	EPA 351.2	873213	EPA 351.2	874369	
5760275002	LAKE 9 Comp 256	EPA 351.2	873213	EPA 351.2	874369	
5760275003	LAKE 9 Comp 8 11 12 14	EPA 351.2	873213	EPA 351.2	874369	
5760275004	LAKE 9 Comp 17 18 20 21	EPA 351.2	873213	EPA 351.2	874369	
5760275005	LAKE 9 Comp 15 16 19 22	EPA 351.2	873213	EPA 351.2	874369	
5760275006	LAKE 9 Comp 7 9 10 13	EPA 351.2	873213	EPA 351.2	874369	
5760275007	LAKE 8 Comp 137	EPA 351.2	873213	EPA 351.2	874369	
5760275008	LAKE 8 Comp 248	EPA 351.2	873213	EPA 351.2	874369	
5760275009	LAKE 8 Comp 659	EPA 351.2	873213	EPA 351.2	874369	
5760275001	LAKE 9 Comp 134	EPA 353.2	873138	EPA 353.2	873139	
5760275002	LAKE 9 Comp 256	EPA 353.2	873138	EPA 353.2	873139	
5760275003	LAKE 9 Comp 8 11 12 14	EPA 353.2	873138	EPA 353.2	873139	
5760275004	LAKE 9 Comp 17 18 20 21	EPA 353.2	873138	EPA 353.2	873139	
5760275005	LAKE 9 Comp 15 16 19 22	EPA 353.2	873138	EPA 353.2	873139	
5760275006	LAKE 9 Comp 7 9 10 13	EPA 353.2	873138	EPA 353.2	873139	
5760275007	LAKE 8 Comp 137	EPA 353.2	873138	EPA 353.2	873139	
5760275008	LAKE 8 Comp 248	EPA 353.2	873138	EPA 353.2	873139	
5760275009	LAKE 8 Comp 659	EPA 353.2	873138	EPA 353.2	873139	
5760275001	LAKE 9 Comp 134	EPA 365.4	873212	EPA 365.4	874370	
5. 50E 1 500 I		LI / (000T	010212	L1/1000.4	0,40,0	

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	City of Naples Lake Restoratio
Pace Project No.:	35760275

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
35760275003	LAKE 9 Comp 8 11 12 14	EPA 365.4	873212	EPA 365.4	874370
35760275004	LAKE 9 Comp 17 18 20 21	EPA 365.4	873212	EPA 365.4	874370
35760275005	LAKE 9 Comp 15 16 19 22	EPA 365.4	873212	EPA 365.4	874370
35760275006	LAKE 9 Comp 7 9 10 13	EPA 365.4	873212	EPA 365.4	874370
35760275007	LAKE 8 Comp 137	EPA 365.4	873212	EPA 365.4	874370
35760275008	LAKE 8 Comp 248	EPA 365.4	873212	EPA 365.4	874370
35760275009	LAKE 8 Comp 659	EPA 365.4	873212	EPA 365.4	874370

												1	_
2	-									SNO	7	58(Cooler Sampl Intact Intact
	ъ		cy	-						SAMPLE CONDITIONS	5	Ap	(V/V) Custod Sealed Cooler
	÷		Regulatory Agency	State / Location	d.				_	SAMPI	7	uo pe/	Receiv
SE	Page :		Regula	State		E	Kesidual Chlorine (Y/N)					jn C	TEMP
35760275	-				111	(2)		-		TIME	10/2		
3576					N. 1	Analysis Hitered (Y/N)		-		DATE	47		
						thalysis F					1		÷
CHAIN-OF-CUSTODY / Analytical Request Docum The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be co				.mo		ested	× × × × × × × × × × × × × × × × × × ×			-	H		DATE Signed:
nt fields				christina rascinke@bacelabs.com		Regu	GT.(NT)XON, MAT ×			ACCEPTED BY / AFFILIATION			DA
I Rec				schke@o			A/Y teeT seaview A A A A A A A A A A A A A A A A A A A	T		DBVIAF	7		
ytica ENT. All				ristina tas			lonerheite Martine	-		ACCEPTE	B		
Anal ocume					5		Изторист	-	-		N		
GAL DC	mation:	me:		Manage	#: 82	1		-				-	
STO is a LE	Section C Invoice Information:	Attention: Company Name:	Address:	Pace Quote: Pace Project Manager:	Pace Profile #:			-	-	TIME	13cD	22	
F-CU Sustody	Sec	Atte	Add	Statement of the local division in which the local division in the	A DESCRIPTION OF TAXABLE PARTY.	t	SAMPLE TEMP AT COLLECTION	F		DATE	12/21	SIGNATU	WFLER
IN-O ain-of-C				tronino				-	_	d	M	AE AND S	PRINT Name of SAMPLERC
CHA The Ch							CTED	-	-	NOU		SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLENC
	surferom.			0	City of Naples Lake residence					RELINCHISHED BY JAFFILATION	X	SAMP	D-
	is achiro nation:	Bu		6 MIL-142	or Napies		START DATE T IIIIIIABO IIIIIIIIIIIIIIIIIIIIIIIIIIIII			HED BY			
	ct Inform	Greg Coming			CIIVO		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-		ELINOKI	M.C.		
1	In or custory constitutes activities activitities activities activities activities activ	To: G	1	Purchase Order #:	Project #:					æ	19		
	Section B Required F	Report To:	(doo	Purcha	Project #		ē.						
-	a this cn	Inc									- 1.		
	Imple via	structure					MATRIX MATRIX Matrix Matrix Product			TIS			
	ling a sa	t & Infras			Fax		box. 134 134 134 134 134 134 134 134 134 134			ADDITIONAL COMMENTS			
	Submit	vironmen	n Street				APLE ID aracter per boo 2, 0-9/,-) ds must be uni ds must be uni de unp d comp comp comp			NTSOMA!			
Pace	mation	WSP USA Environment & Infrastructure Inc	5845 NW 158th Street 014	g@wsp.c	(314)920-8359 e Date:		a a a a a c t a se ids	1 1		ATH		<u>.a</u>	
6ª	Section A	WSP	5845 33014	greg.coming@wsp.com	Phone: (314)9 Reminested Due Date:		SAN One Chi A Sample la LAKE 9 LAKE 9 LAKE 9 LAKE 9 LAKE 9 LAKE 8 LAKE 8 LAKE 8						an an
1	Section A	Company:	Hialesh FI 33014	Email: gre	1.22	poteont	*WELL - 0 0 + 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	10.10	11	12		Page 45	5 of

ATTACHMENT A

	0093 Sample Condition Up /29/2021 Issued by: Ormo	ond Beach	•••= '^;UR)		Pa	ice
	WO#:357	6027	5		d Initials of per	son:
Project #	PM: RL	Due Date:	11/22/22	Examinin	g contents:	
Project Manager:	CLIENT 36-MACT	EC				
Client:						
Thermometer Used:	399 Date:	1-16-2	2 Time: 150	O Ini	tials: NPI	
		For WV proje	cts, all containers verified t	o ≤6 °C		
State of Origin: Cooler #1 Temp.*C(Visu				Samp	les on ice, cooling proce	
Cooler #1 Temp."C(Visu Cooler #2 Temp.°C(Visu	al) (Correction	Factor)	(Actual)		les on ice, cooling proc	
Cooler #2 Temp.°C(Visu	al)(Correction	Factor)	(Actual)		iles on ice, cooling proc	
Cooler #3 Temp.°C(Visu Cooler #4 Temp.°C(Visu	al)(Correction	Factor)	(Actual)		oles on ice, cooling proc	
Cooler #4 Temp.°C(Visu Cooler #5 Temp.°C(Visu	al)(Correction	Factor)	(Actual)		oles on ice, cooling proc	
					ples on ice, cooling pro	
Cooler #5 Temp. C(Vis Cooler #6 Temp.°C(Vis Recheck for OOT °C(Vi	ial)(Correction	on Eactor)	(Actual) Time:		Initials:	
Recheck for OOT °C(Vi	UPS USPS Clie		mercial Pace	F Other		
Billing: □ Recipient Tracking #390.6] Unknown	Blue Melted	None
Tracking # <u>3906</u> Custody Seal on Cooler/Box Pres Packing Material: Bubble Wra	$7 328 5150$ sent: \Box Yes $\square No$ $P \square Bubble Bags \square$	Seals inta	act: Ves No	Ice:		None y:
Tracking # <u>3906</u> Custody Seal on Cooler/Box Pres	$7 328 5150$ sent: \Box Yes $\square No$ $P \square Bubble Bags \square$	Seals inta Nonc Oth Date:	act: Ves No	Ice:		
Tracking # <u>3906</u> Custody Seal on Cooler/Box Pres Packing Material: ⊡Bubble Wra Samples shorted to lab (If Yes, co	$7328 8150$ sent: \Box Yes \Box No p \Box Bubble Bags \Box complete) Shorted	Seals inta Nonc Oth Date:	act: Yes No er Shorte	Ice:		
Tracking # <u>3906</u> Custody Seal on Cooler/Box Pres Packing Material: Bubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present	7328 8150 sent: Yes No p Bubble Bags C omplete) Shorted	Seals inta Nonc □Oth Date:C	act: Yes No er Shorte	Ice:		
Tracking # <u>3906</u> Custody Seal on Cooler/Box Pres Packing Material: Bubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Filed Out	7328 8150 sent: Yes No p Bubble Bags C complete) Shorted Yes	Seals inta Nonc Oth Date:C	act: Yes No er Shorte	Ice:		
Tracking # 3906 Custody Seal on Cooler/Box Press Packing Material: DBubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler	7 3 2 8 8 1 5 0 sent: Yes No p Bubble Bags C omplete) Shorted Yes Name COC Yes Yes	Seals int Nonc Oth Date: C No N/A No N/A No N/A No N/A No N/A No N/A	act: Yes No er Shorte	Ice:		
Tracking # 3906 Custody Seal on Cooler/Box Press Packing Material: Bubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Samples Arrived within Hold Time	7 3 2 8 8 1 5 0 sent: Yes No p Bubble Bags C omplete) Shorted Yes Name COC Yes Yes	Seals inta Nonc Oth Date: C No N/A No N/A No N/A No N/A	act: Yes No er Shorte	Ice:		
Tracking # 3906 Custody Seal on Cooler/Box Press Packing Material: DBubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Samples Arrived within Hold Time Rush TAT requested on COC	7 328 8150 sent: Yes No p Bubble Bags C omplete) Shorted Yes Name COC Yes Yes Yes	Seals int Nonc Oth Date: C No N/A No N/A No N/A No N/A No N/A No N/A	act: Yes No er Shorte	Ice:		
Tracking # 3906 Custody Seal on Cooler/Box Press Packing Material: Bubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume	7 328 8150 sent: Yes No p Bubble Bags C omplete) Shorted Yes Name COC Yes Yes Yes	Seals int Nonc Oth Date: C No N/A	act: Yes No er Shorte	Ice:		
Tracking # 3906 Custody Seal on Cooler/Box Press Packing Material: DBubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used	7 3 2 8 8 1 5 0 sent: Yes No p Bubble Bags C omplete) Shorted Yes Name COC Yes Yes Yes Yes Yes Yes	Seals int Nonc Oth Date: C No N/A	act: Yes No er Shorte	Ice:		
Tracking # <u>3906</u> Custody Seal on Cooler/Box Press Packing Material: Bubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (samp	7 3 2 8 8 1 5 0 sent: Yes No p Bubble Bags C omplete) Shorted Yes Name COC Yes Yes Yes Yes Yes Yes Yes	Seals int Nonc Oth Date: C No N/A	act: Ves No erShorte	Ice: (W		
Tracking # <u>390.6</u> Custody Seal on Cooler/Box Press Packing Material: Rubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Filed Out Relinquished Signature & Sampler Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (samp collection) All containers needing acid/base p	7 3 2 8 8 1 5 0 sent: Yes No p Bubble Bags C omplete) Shorted Yes Name COC Yes Yes Yes Yes Yes Yes Yes Yes	Seals inta Nonc Oth Date: C No N/A	Preservation Informatio	Ice: (W		
Tracking # <u>390.6</u> Custody Seal on Cooler/Box Press Packing Material: Rubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (samp collection) All containers needing acid/base p been checked. All Containers needing preservatio	7 3 2 8 8 1 5 0 sent: Yes No p Bubble Bags C omplete) Shorted Yes Yes Yes Yes Yes Yes Yes Yes	Seals inta Nonc Oth Date: C No N/A	Preservation Informatio	Ice: (W		
Tracking # <u>390.6</u> Custody Seal on Cooler/Box Press Packing Material: DBubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (samp collection) All containers needing acid/base p been checked. All Containers needing preservatic compliance with EPA recommend Exceptions: Vial	7 3 2 8 8 1 5 0 sent: Yes No p Bubble Bags C omplete) Shorted Yes Yes Yes Yes Yes She IDs & date/time of Yes She IDS & date/time of Yes	Seals int Nonc Oth Date: C No N/A	Preservation Informatio Preservation Informatio Date:	Ice: (W		
Tracking # <u>390.6</u> Custody Seal on Cooler/Box Press Packing Material: Rubble Wra Samples shorted to lab (If Yes, co Chain of Custody Present Chain of Custody Present Chain of Custody Filled Out Relinquished Signature & Sampler Samples Arrived within Hold Time Rush TAT requested on COC Sufficient Volume Correct Containers Used Containers Intact Sample Labels match COC (samp collection) All containers needing acid/base p been checked. All Containers needing preservatio	7 3 2 8 8 1 5 0 sent: Yes No p Bubble Bags C omplete) Shorted Yes Yes Yes Yes Yes She IDs & date/time of Yes She IDS & date/time of Yes	Seals inta Nonc Oth Date: C No N/A No	Preservation Informatio Preservation Informatio Date:	Ice: (W		y:

ATTACHMENT A

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Date: 11/29/2022

CASE NARRATIVE

Pace Analytical Ormond Beach
35760275 City of Naples Restoration
S2211278

Report ID: S2211278001

Entire Report Reviewed by:

John M. Jacolos

John Jacobs, Project Manager

Samples LAKE 8 Comp 137, LAKE 8 Comp 248, LAKE 8 Comp 659, LAKE 9 Comp 134, LAKE 9 Comp 15 16 19 22, LAKE 9 Comp 17 18 20 21, LAKE 9 Comp 256, LAKE 9 Comp 7 9 10 13 and LAKE 9 Comp 8 11 12 14 were received on November 18, 2022.

All samples were received and analyzed within recommended holding times, except those noted below in this case narrative. Samples were analyzed using methods outlined in the following references:

Standard Methods for the Examination of Water and Wastewater, approved method versions EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, online versions EPA methods 40 CFR Parts 136 and 141EPA 600/2-78-054 methods NDEP Mining Methods 40 CFR Part 50, Appendices B, J, L, O and FEM EQL-0310-189 IO Compendium Methods Clean Water Act Methods Update Rule for the Analysis of Effluent, current version. ASTM approved and recognized standards ISO approved and recognized standards USDA Handbook 60 Soil Survey Laboratory Manual Ver 4.0 ASA/SSSA 9 Methods of Analysis Part 2, 1982 ASA/SSSA Methods of Analysis Book 5 Part 3, 1996 Other industry approved methods

All Quality Control parameters met the acceptance criteria defined by EPA and Pace Analytical except as indicated in this case narrative:

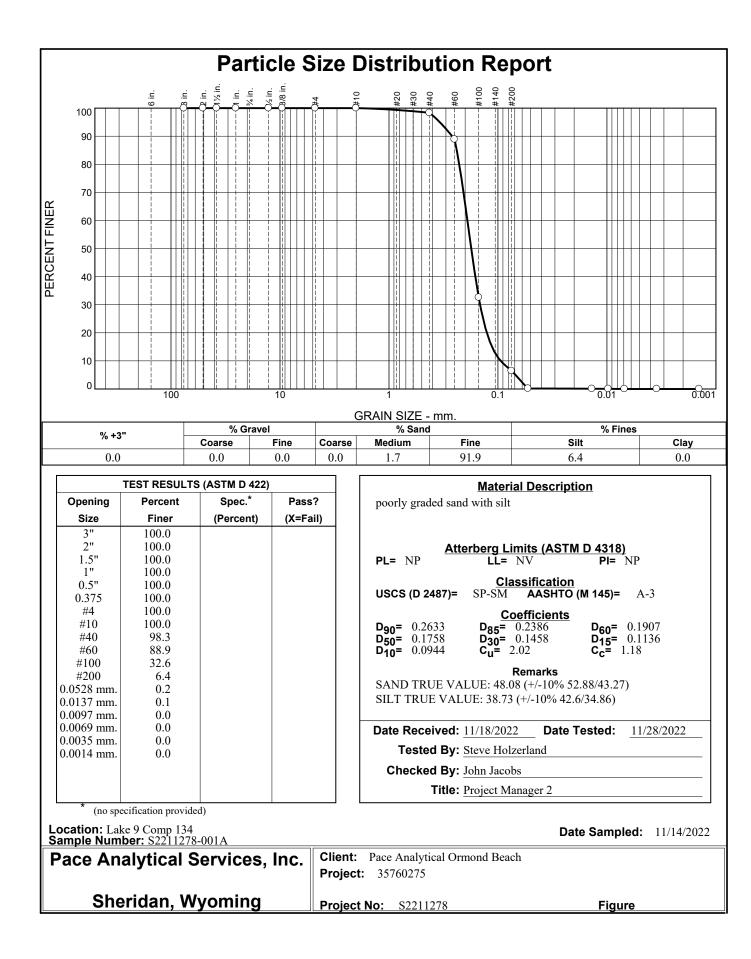
Pace Analytical

1673 Terra Avenue Sheridan, WY 82801

ph: (307) 672-8945

Date: 11/29/2022

Definitions

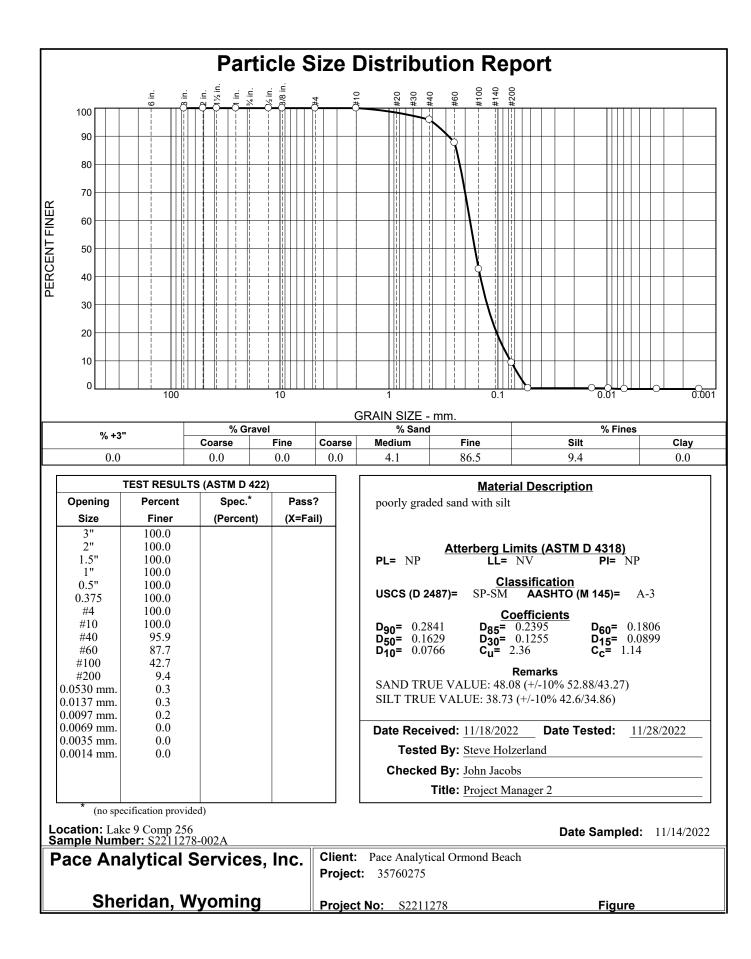

RL **Reporting Limit**

Qualifiers * Value exceeds Maximum Contaminant Level A Check MSA specifications В Analyte detected in the associated Method Blank С **Calculated Value** D Report limit raised due to dilution Е Value above quantitation range G Analyzed at Pace Gillette, WY laboratory Н Holding times for preparation or analysis exceeded Analyte detected below quantitation limits J Analyzed by another laboratory L Μ Value exceeds Monthly Ave or MCL or is less than LCL ND Not Detected at the Reporting Limit

- 0 Outside the Range of Dilutions
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- U Analyte below method detection limit
- Х Matrix Effect

				Soil Analysis Report	
				Pace Analytical Ormond Beach	Report ID: S2211278001
				8 East Tower Circle	
Project:	35760275			Ormond Beach, FL 32174	
Date Received:	11/18/2022				Work Order: S2211278
		Percent	Organic		
		Moisture	Matter		
Lab ID	Sample ID	%	%		
S2211278-001	LAKE 9 Comp 134	31.1	2.2		
S2211278-002	LAKE 9 Comp 256	51.6	4.5		
S2211278-003	LAKE 9 Comp 8 11	63.0	2.5		
S2211278-004	LAKE 9 Comp 17	57.2	2.1		
S2211278-005	LAKE 9 Comp 15	46.7	3.6		
S2211278-006	LAKE 9 Comp 7 9	26.8	0.7		
S2211278-007	LAKE 8 Comp 137	51.9	4.3		
S2211278-008	LAKE 8 Comp 248	36.3	2.1		
S2211278-009	LAKE 8 Comp 659	33.9	2.5		
ese results appl breviations for e threviations used	These results apply only to the samples tested. Abbreviations for extractants: PE= Saturated Pa Abbreviations used in acid base accounting: T.S Miscellaneous Abbreviations: SAR= Sodium Ad	ed. I Paste Extract, T.S.= Total Sulf Adsorption Rati	H20Sol= water so ur, AB= Acid Bas o, CEC= Cation E	These results apply only to the samples tested. Abbreviations for extractants: PE= Saturated Paste Extract, H20Sol= water soluble,AB-DTPA= Ammonium Bicarbonate-DTPA, AAO= Acid Ammonium Oxalate Abbreviations used in acid base accounting: T.S.= Total Sulfur, AB= Acid Base, ABP= Acid Base Potential, PyrS= Pyritic Sulfur, Pyr+Org= Pyritic Sulfur + Organic Sulfur, Neutral. Pot.= Neutralization Potential Abbreviations used in acid base accounting: T.S.= Total Sulfur, AB= Acid Base, ABP= Acid Base Potential, PyrS= Pyritic Sulfur, Pyr+Org= Pyritic Sulfur + Organic Sulfur, Neutral. Pot.= Neutralization Potential Abbreviations used in acid base Solium Adsorption Ratio, CEC= Cation Exchange Capacity, ESP= Exchangeable Sodium Percentage, TOC=Total Organic Carbon	um Oxalate ulfur + Organic Sulfur, Neutral. Pot.= Neutralization Pote otal Organic Carbon
80 80 80 80 80 80 80 80 80 80 80 80 80 8	Reviewed by: Crystal Aleman	N			Page 1 of 1
1					

ATTACHMENT A

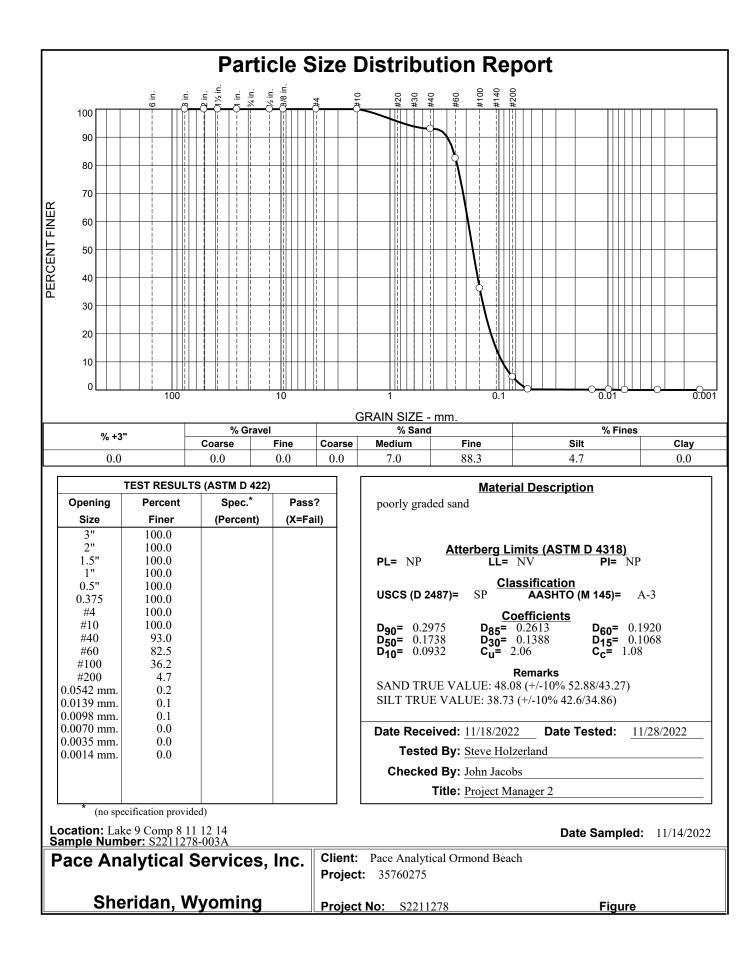

	Analytical Orm	nond Beach					
Project: 3576							
	ber: S2211278 ke 9 Comp 134						
	ber: S2211278						
•	cription: poorl		with silt				
	: 11/14/2022 9		with Silt				
•	ed: 11/18/2022			LL: NV	7	PI: NP	
	fication: SP-S			AASH1			
Grain Size To	est Method: A	STM D 422					
esting Rem	arks: SAND 7	RUE VALUE	: 48.08 (+/-10	0% 52.88/43	.27)		
		RUE VALUE:	38.73 (+/-10%		/		
-	teve Holzerlan	d			ate: 11/28/2022		
Checked By:	John Jacobs				Project Manager 2	2	
			Sie	eve Test Dat	a		
Dry							
- · ·		Sieve	Weight	Sieve			
Sample	-						
and Tare	Tare (grams)	Opening	Retained	Weight	Percent Finer		
and Tare (grams)	(grams)	Opening Size	Retained (grams)	Weight (grams)	Finer		
and Tare		Opening Size 3"	Retained (grams) 0.00	Weight (grams) 0.00	Finer 100.0		
and Tare (grams)	(grams)	Opening Size 3" 2"	Retained (grams) 0.00 0.00	Weight (grams)	Finer 100.0 100.0		
and Tare (grams)	(grams)	Opening Size 3"	Retained (grams) 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00	Finer 100.0 100.0 100.0		
and Tare (grams)	(grams)	Opening Size 3" 2" 1.5"	Retained (grams) 0.00 0.00	Weight (grams) 0.00 0.00	Finer 100.0 100.0		
and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1"	Retained (grams) 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0		
and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5"	Retained (grams) 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0		
and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0		
and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0		
and Tare (grams) 107.35	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		
and Tare (grams) 107.35	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.29	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.3		
and Tare (grams) 107.35	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40 #60	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.29 7.40	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.3 88.9		

Hydrometer test Percent passing Weight of hydro Table of compo Temp., deg. C Comp. corr.: Meniscus correc Specific gravity	y #200 based ometer sampl site correction : 21 -6 ction only = 0	upon compl e =78.09 on values: .0 2 .0 - 0.0	200	drometer ⁻ 5.4	Γest Dat	a					
Hydrometer type = 152H Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm											
Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm Elapsed Temp. Actual Corrected Eff. Diameter											
Time (min.)	(deg. C.)	Reading	Reading	K	Rm	Depth	(mm.)	Finer			
1.00	20.0	8.0	2.0	0.0136	8.0	15.0	0.0528	0.2			
15.00	20.0	7.0	1.0	0.0136	7.0	15.1	0.0137	0.1			
30.00	20.0	6.5	0.5	0.0136	6.5	15.2	0.0097	0.0			
60.00	20.0	6.0	0.0	0.0136	6.0	15.3	0.0069	0.0			
240.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0035	0.0			
1440.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0014	0.0			
			Fra	ctional Co	mponer	its					

Cobbles	Gravel				Sa	nd	Fines			
Copples	Coarse Fine		Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	1.7	91.9	93.6	6.4	0.0	6.4

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0690	0.0944	0.1136	0.1265	0.1458	0.1613	0.1758	0.1907	0.2265	0.2386	0.2633	0.3416

1	Fineness Modulus	c _u	Cc
	0.76	2.02	1.18

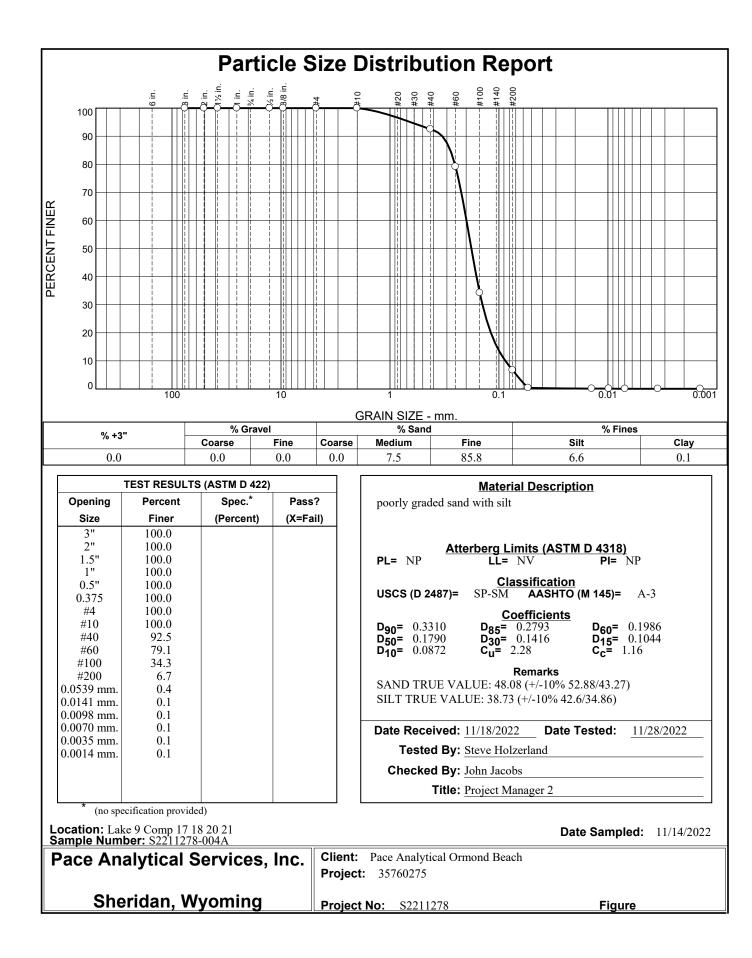

1278 p 256 1278-002A poorly graded sand 22 10:00 2022 PL : NP SP-SM d: ASTM D 422 ND TRUE VALUE T TRUE VALUE: erland obs	E: 48.08 (+/-10 38.73 (+/-109	0% 52.88/43 % 42.6/34.86 Test D Title: P	FO Classificatio	-	
p 256 1278-002A poorly graded sand 022 10:00 2022 PL: NP SP-SM Id: ASTM D 422 ND TRUE VALUI T TRUE VALUE: erland	E: 48.08 (+/-10 38.73 (+/-109	AASH7 0% 52.88/43. % 42.6/34.86 Test D Title: P	FO Classificatio .27)) ate: 11/28/2022	n: A-3	
1278-002A poorly graded sand 22 10:00 2022 PL: NP SP-SM d: ASTM D 422 ND TRUE VALUI T TRUE VALUE: erland	E: 48.08 (+/-10 38.73 (+/-109	AASH7 0% 52.88/43. % 42.6/34.86 Test D Title: P	FO Classificatio .27)) ate: 11/28/2022	n: A-3	
poorly graded sand 22 10:00 2022 PL: NP SP-SM d: ASTM D 422 ND TRUE VALUI T TRUE VALUE: erland	E: 48.08 (+/-10 38.73 (+/-109	AASH7 0% 52.88/43. % 42.6/34.86 Test D Title: P	FO Classificatio .27)) ate: 11/28/2022	n: A-3	
22 10:00 2022 PL: NP SP-SM d: ASTM D 422 ND TRUE VALUI T TRUE VALUE: erland	E: 48.08 (+/-10 38.73 (+/-109	AASH7 0% 52.88/43. % 42.6/34.86 Test D Title: P	FO Classificatio .27)) ate: 11/28/2022	n: A-3	
2022 PL: NP SP-SM Id: ASTM D 422 ND TRUE VALUI T TRUE VALUE: erland	38.73 (+/-109	AASH7 0% 52.88/43. % 42.6/34.86 Test D Title: P	FO Classificatio .27)) ate: 11/28/2022	n: A-3	
SP-SM d: ASTM D 422 ND TRUE VALUI T TRUE VALUE: erland	38.73 (+/-109	AASH7 0% 52.88/43. % 42.6/34.86 Test D Title: P	FO Classificatio .27)) ate: 11/28/2022	n: A-3	
d: ASTM D 422 ND TRUE VALUI T TRUE VALUE: erland	38.73 (+/-109	0% 52.88/43 % 42.6/34.86 Test D Title: P	.27)) ate: 11/28/2022	-	
ND TRUE VALUI T TRUE VALUE: erland	38.73 (+/-109	% 42.6/34.86 Test D Title: P) ate: 11/28/2022	2	
T TRUE VALUE: erland	38.73 (+/-109	% 42.6/34.86 Test D Title: P) ate: 11/28/2022	2	
	Sie	Title: P		2	
obs	Sie		Project Manager 2	2	
	Sie			2	
		eve Test Dat	a		
Sieve	Weight	Sieve			
Opening	Retained	Weight	Percent		
	(grams)	(grams)	Finer		
-		0.00			
		0.00			
		0.00			
-		0.00			
		0.00			
0.375	0.00	0.00	100.0		
#4	0.00	0.00	100.0		
#10	0.00	0.00	100.0		
) #40	2.06	0.00	95.9		
#60	4.10	0.00	87.7		
	22.59	0.00	42.7		
#100	16.70	0.00	9.4		
	0 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 00 #40 #60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrometer test Percent passing Weight of hydro Table of compo Temp., deg. O Comp. corr.: Meniscus corret Specific gravity	g #200 based ometer samp site correctio : 21 -6 ction only =	l upon comp le =50.15 on values: .0 2 .0 0.0	200	drometer ⁻ 9.4	Test Dat	ta			
Hydrometer typ	e = 152H		L = 16.294964	- 0.164 x R	m				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	20.0	7.5	1.5	0.0136	7.5	15.1	0.0530	0.3	
15.00	20.0	7.5	1.5	0.0136	7.5	15.1	0.0137	0.3	
30.00	20.0	7.0	1.0	0.0136	7.0	15.1	0.0097	0.2	
60.00	20.0	6.0	0.0	0.0136	6.0	15.3	0.0069	0.0	
240.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0035	0.0	
1440.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0014	0.0	
			Fra	ctional Co	mponer	its			

Cobbles		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	4.1	86.5	90.6	9.4	0.0	9.4

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0645	0.0766	0.0899	0.1028	0.1255	0.1451	0.1629	0.1806	0.2241	0.2395	0.2841	0.3959

1	Fineness Modulus	c _u	Cc
	0.70	2.36	1.14

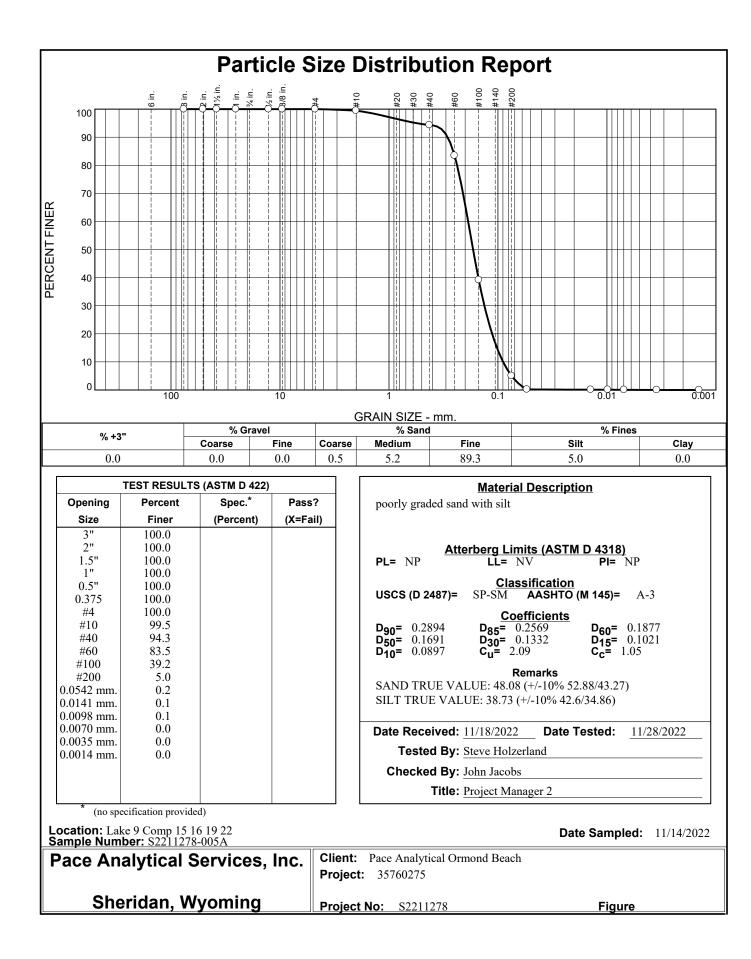

Client: Daga	Analytical Orm	and Beach					
Project: 357		iond Beach					
•	nber: S2211278	2					
•	ake 9 Comp 8 1						
	nber: S2211278						
-	scription: poorl						
	e: 11/14/2022 1						
Date Receiv	ed: 11/18/2022	PL: NP		LL: NV	Ι	PI: NP	
USCS Class	ification: SP			AASH	ΓΟ Classificati	on: A-3	
	Fest Method: A						
Testing Rer	narks: SAND 7						
		RUE VALUE:	38.73 (+/-10%		/	_	
•	Steve Holzerlan	ıd			ate: 11/28/2022		
Checked By	: John Jacobs				Project Manager	r 2	
			Sie	eve Test Dat	a		
Dry							
Sample	-	Sieve	Weight	Sieve			
Sample and Tare	Tare (grams)	Sieve Opening Size	Retained	Weight	Percent Finer		
Sample and Tare (grams)	(grams)	Opening Size	Retained (grams)	Weight (grams)	Finer		
Sample and Tare		Opening	Retained (grams) 0.00	Weight	Finer 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2"	Retained (grams) 0.00 0.00	Weight (grams) 0.00	Finer		
Sample and Tare (grams)	(grams)	Opening Size 3"	Retained (grams) 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00	Finer 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1"	Retained (grams) 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5"	Retained (grams) 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00	Finer 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5"	Retained (grams) 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams) 39.25	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams) 39.25	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 93.0		

			Ну	drometer ⁻	Test Dat	ta			
Hydrometer tes	t uses mater	ial passing #	200						
Percent passing	g #200 based	l upon comp	lete sample = 4	4.7					
Weight of hydro	ometer samp	le =39.25							
Table of compo	site correction	on values:							
Temp., deg. C Comp. corr.:			22.0 -5.7						
•			5.7						
Meniscus corre									
Specific gravity		2.65							
Hydrometer typ									
Hydrometer e	effective dept	th equation:	L = 16.294964	- 0.164 x R	m				
Elapsed	Temp.	Actual	Corrected			Eff.	Diameter	Percent	
Time (min.)	(deg. C.)	Reading	Reading	K	Rm	Depth	(mm.)	Finer	
1.00	18.0	8.0	2.0	0.0140	8.0	15.0	0.0542	0.2	
15.00	19.0	7.0	1.0	0.0138	7.0	15.1	0.0139	0.1	
30.00	19.0	7.0	1.0	0.0138	7.0	15.1	0.0098	0.1	
60.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0070	0.0	
240.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0035	0.0	
1440.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0014	0.0	
	19.0	6.0		0.0138 ctional Co			0.0014	0.0	

Cobbles		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	7.0	88.3	95.3	4.7	0.0	4.7

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0762	0.0932	0.1068	0.1186	0.1388	0.1566	0.1738	0.1920	0.2408	0.2613	0.2975	0.7656

Fineness Modulus	c _u	Cc
0.82	2.06	1.08

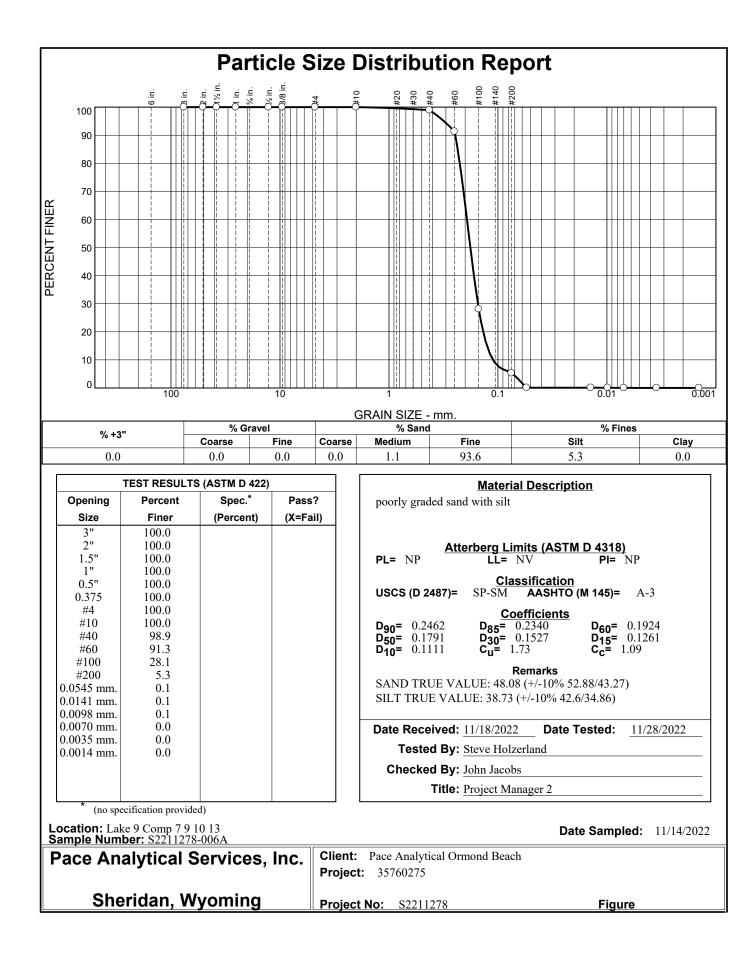

roject Number: S2211278 ocation: Lake 9 Comp 17 18 20 21 ample Number: S2211278-004A laterial Description: poorly graded sand with silt ample Date: 11/14/2022 1:05 ate Received: 11/18/2022 PL: NP LL: NV PI: NP SCS Classification: SP-SM AASHTO Classification: A-3 train Size Test Method: ASTM D 422 esting Remarks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43.27) SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) ested By: Steve Holzerland Test Date: 11/28/2022									
Dry Sieve Weight Sieve Percent Ory 3" 0.00 0.00 100.0 50.10 0.00 3" 0.00 100.0 1"" 0.00 100.0 100.0 100.0 1"" 0.00 100.0 100.0 100.0 1"" 0.00 100.0 100.0 100.0 1"" 1"" 0.00 100.0 100.0 1"" 1"" 0.00 100.0 100.0 1"" 1"" 0.00 100.0 100.0 1"" 1"" 0.00 100.0 100.0 1"" 0.00 100.0 100.0 100.0 1"" 0.00 100.0 100.0 100.0 1"" 0.00 0.00 100.0 100.0 1"" 0.00 0.00 100.0 100.0 1"" 0.00 0.00 100.0 100.0 1"" 0.00 0.00 100.0 100.0 1"" 0.00 0.00 100.0 100.0						ond Beach			
Docation: Lake 9 Comp 17 18 20 21 ample Number: S2211278-004A laterial Description: poorly graded sand with silt ample Date: 11/14/2022 1:05 ate Received: 11/18/2022 PL: NP LL: NV SCS Classification: SP-SM AASHTO Classification: A-3 irain Size Test Method: ASTM D 422 esting Remarks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43.27) SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) ested By: Steve Holzerland Test Date: hecked By: John Jacobs Title: Sieve Test Date: Dry Sample Tare and Tare Tare Veight (grams) 0.00 0.00 50.10 0.00 3" 0.00 0.00 1.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 1.5" 0.00 0.00 1								-	
Dry Sieve Weight Sieve Percent Ory 3" 0.00 0.00 100.0 50.10 0.00 3" 0.00 100.0 1"" 0.00 100.0 100.0 100.0 1"" 0.00 100.0 100.0 100.0 1"" 0.00 100.0 100.0 100.0 1"" 1"" 0.00 100.0 100.0 1"" 1"" 0.00 100.0 100.0 1"" 1"" 0.00 100.0 100.0 1"" 1"" 0.00 100.0 100.0 1"" 0.00 100.0 100.0 100.0 1"" 0.00 100.0 100.0 100.0 1"" 0.00 0.00 100.0 100.0 1"" 0.00 0.00 100.0 100.0 1"" 0.00 0.00 100.0 100.0 1"" 0.00 0.00 100.0 100.0 1"" 0.00 0.00 100.0 100.0								•	
Discription: poorly graded sand with silt ample Date: 11/14/2022 1:05 LL: NV PI: NP sate Received: 11/18/2022 PL: NP LL: NV PI: NP SCS Classification: SP-SM AASHTO Classification: A-3 irain Size Test Method: ASTM D 422 esting Remarks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43.27) SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) ested By: Steve Holzerland Test Date: 11/28/2022 Title: Project Manager 2 betted By: John Jacobs Title: Project Manager 2 Sieve Test Date: 11/28/2022 Title: Project Manager 2 Dry sample and Tare (grams) 50.10 0.00 3" 0.00 0.00 100.0 50.10 0.00 3" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 100.0 100.0 1.5" 0.00 0.00 100.0<									
Date: 11/14/2022 PL: NP LL: NV PI: NP SCS Classification: SP-SM AASHTO Classification: A-3 irain Size Test Method: ASTM D 422 esting Remarks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43.27) SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) ested By: Steve Holzerland Test Date: 11/28/2022 thecked By: John Jacobs Title: Project Manager 2 Dry sample and Tare (grams) Sieve (grams) Weight Size Sieve (grams) Percent (grams) 50.10 0.00 3" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 11" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 11" 0.00 0.00 100.0 11" <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></t<>								•	
SCS Classification: SP-SM AASHTO Classification: A-3 Arain Size Test Method: ASTM D 422 AASHTO Classification: A-3 esting Remarks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43.27) SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) Silt TRUE VALUE: 38.73 (+/-10% 42.6/34.86) ested By: Steve Holzerland Test Date: 11/28/2022 thecked By: John Jacobs Title: Project Manager 2 Dry Sieve Weight Sieve grams) Sieve Weight Sieve 50.10 0.00 3" 0.00 100.0 1.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 #4 0.00 0.00 100.0 #10 0.00 3.76 0.00 92.5					with silt				
Brain Size Test Method: ASTM D 422 esting Remarks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43.27) SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) ested By: Steve Holzerland Test Date: 11/28/2022 thecked By: John Jacobs Title: Project Manager 2 Sieve Test Date: 11/28/2022 The Sieve Test Date: 11/28/2022 The Sieve Test Date: 11/28/2022 The Sieve Test Date: 11/28/2022 Dry Sample and Tare (grams) Gieve Opening Size Veignts Sieve Test Date 50.10 0.00 3" 0.00 0.00 100.0 10.00 0.00 100.0 10.00 0.00 100.0 10.00 0.00 100.0 11 0.00 0.00 100.0 10 0.00 0.00 100.0 10 0.00 0.00 100.0 10 0.00 0.00 100.0 11 0.00 0.00 100.0 100.0 <td col<="" td=""><td>Р</td><td>PI: NP</td><td></td><td>LL: NV</td><td></td><td>PL: NP</td><td>d: 11/18/2022</td><td>ate Receive</td></td>	<td>Р</td> <td>PI: NP</td> <td></td> <td>LL: NV</td> <td></td> <td>PL: NP</td> <td>d: 11/18/2022</td> <td>ate Receive</td>	Р	PI: NP		LL: NV		PL: NP	d: 11/18/2022	ate Receive
esting Remarks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43.27) SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) ested By: Steve Holzerland Test Date: 11/28/2022 Title: Project Manager 2 Dry Sample and Tare (grams) Sieve Opening Size Weight Retained (grams) 50.10 0.00 3" 50.10 0.00 3" 0.00 0.00 Sieve Opening Size Weight Retained (grams) Finer 50.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td></td> <td>tion: A-3</td> <td>O Classificati</td> <td>AASHT</td> <td></td> <td>M</td> <td>fication: SP-S</td> <td>SCS Classi</td>		tion: A-3	O Classificati	AASHT		M	fication: SP-S	SCS Classi	
SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) Test Date: 11/28/2022 Title: Project Manager 2 Sieve Test Data Dry Sieve Opening (grams) Sieve Opening Size Weight Retained (grams) Percent Finer 50.10 0.00 3" 0.00 0.00 100.0 2" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 1" 0.00 0.00 100.0 0.375 0.00 0.00 100.0 10 0.00 100.0 100.0 50.10 0.00 #40 3.76 0.00 92.5									
ested By: Steve Holzerland Test Date: 11/28/2022 checked By: John Jacobs Title: Project Manager 2 Dry Sample and Tare (grams) Sieve Opening (grams) Weight Retained (grams) Percent Finer 50.10 0.00 3" 0.00 0.00 100.0 2" 0.00 0.00 100.0 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 110 0.00 0.00 100.0 50.10 0.00 #40 3.76 0.00 92.5								esting Rem	
Shecked By: John Jacobs Title: Project Manager 2 Sieve Test Data Dry sample and Tare (grams) Tare (grams) Sieve Opening Size Weight Retained (grams) Sieve Weight (grams) Percent Finer 50.10 0.00 3" 0.00 0.00 100.0 2" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 #4 0.00 0.00 100.0 50.10 0.00 #40 3.76 0.00 92.5					38.73 (+/-10%				
Dry Sample and Tare (grams) Sieve Tare (grams) Weight Size Sieve Retained (grams) Percent (grams) Percent Finer 50.10 0.00 3" 0.00 0.00 100.0 2" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 0.375 0.00 0.00 100.0 #4 0.00 0.00 100.0 #10 0.00 0.00 100.0 50.10 0.00 #40 3.76 0.00 92.5						d		•	
Dry Sample and Tare (grams) Tare (grams) Sieve Opening Size Weight Retained (grams) Sieve Weight (grams) Percent Finer 50.10 0.00 3" 0.00 0.00 100.0 2" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 #4 0.00 0.00 100.0 50.10 0.00 #40 3.76 0.00 92.5		er 2					John Jacobs	hecked By:	
Sample and Tare (grams) Tare (grams) Sieve Opening Size Weight Retained (grams) Sieve Weight (grams) Percent Finer 50.10 0.00 3" 0.00 0.00 100.0 2" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 #4 0.00 0.00 100.0 50.10 0.00 #40 3.76 0.00 92.5			a	ve Test Dat	Sie				
Sample and Tare (grams) Tare (grams) Sieve Opening Size Weight Retained (grams) Sieve Weight (grams) Percent Finer 50.10 0.00 3" 0.00 0.00 100.0 2" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0 0.5" 0.00 0.00 100.0 0.375 0.00 0.00 100.0 0.375 0.00 0.00 100.0 #4 0.00 0.00 100.0 50.10 0.00 #40 3.76 0.00 92.5								Drv	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								Sample	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0.00	30.10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-			
0.375 0.00 0.00 100.0 #4 0.00 0.00 100.0 #10 0.00 0.00 100.0 50.10 0.00 #40 3.76 0.00 92.5						-			
#40.000.00100.0#100.000.00100.050.100.00#403.760.0092.5									
#100.000.00100.050.100.00#403.760.0092.5									
50.10 0.00 #40 3.76 0.00 92.5									
#60 6.69 0.00 79.1							0.00	50.10	
#100 22.49 0.00 34.3									
#200 13.79 0.00 6.7			6.7	0.00	13.79	#200			

			Ну	drometer 1	Fest Dat	ta			
Hydrometer test	t uses materi	ial passing #	200						
Percent passing	y #200 based	upon comp	lete sample = 6	5.7					
Weight of hydro	meter sampl	e = 50.10							
Table of compo	site correctio	on values:							
Temp., deg. C Comp. corr.:	21 -6		22.0 5.7						
Meniscus corre	ction only = (0.0							
Specific gravity	of solids = 2								
Hydrometer typ Hydrometer e		h equation:	L = 16.294964	- 0.164 x R i	m				
Elapsed	Temp.	Actual	Corrected	0.201		Eff.	Diameter	Percent	
•							Diamotor		
Time (min.)	(deg. C.)	Reading	Reading	Κ	Rm	Depth	(mm.)	Finer	
Time (min.) 1.00	(deg. C.) 18.0	Reading 9.0		к 0.0140	Rm 9.0				
· · · /		•	Reading			Depth	(mm.)	Finer	
1.00	18.0	9.0	Reading 3.0	0.0140	9.0	Depth 14.8	(mm.) 0.0539	Finer 0.4	
1.00 15.00	18.0 18.0	9.0 7.0	Reading 3.0 1.0	$0.0140 \\ 0.0140$	9.0 7.0	Depth 14.8 15.1	(mm.) 0.0539 0.0141	Finer 0.4 0.1	
1.00 15.00 30.00	18.0 18.0 19.0	9.0 7.0 7.0	Reading 3.0 1.0 1.0	0.0140 0.0140 0.0138	9.0 7.0 7.0	Depth 14.8 15.1 15.1	(mm.) 0.0539 0.0141 0.0098	Finer 0.4 0.1 0.1	
1.00 15.00 30.00 60.00	18.0 18.0 19.0 19.0	9.0 7.0 7.0 6.5	Reading 3.0 1.0 1.0 0.5	0.0140 0.0140 0.0138 0.0138	9.0 7.0 7.0 6.5	Depth 14.8 15.1 15.1 15.2	(mm.) 0.0539 0.0141 0.0098 0.0070	Finer 0.4 0.1 0.1 0.1	
1.00 15.00 30.00 60.00 240.00	18.0 18.0 19.0 19.0 19.0	9.0 7.0 7.0 6.5 6.5	Reading 3.0 1.0 1.0 0.5 0.5 0.5	0.0140 0.0140 0.0138 0.0138 0.0138	9.0 7.0 7.0 6.5 6.5 6.5	Depth 14.8 15.1 15.1 15.2 15.2 15.2	(mm.) 0.0539 0.0141 0.0098 0.0070 0.0035	Finer 0.4 0.1 0.1 0.1 0.1	

Cobbles	Gravel			Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.0	7.5	85.8	93.3	6.6	0.1	6.7	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0691	0.0872	0.1044	0.1186	0.1416	0.1607	0.1790	0.1986	0.2534	0.2793	0.3310	0.6465

Finen Modu		c _u	Cc
0.8	5	2.28	1.16

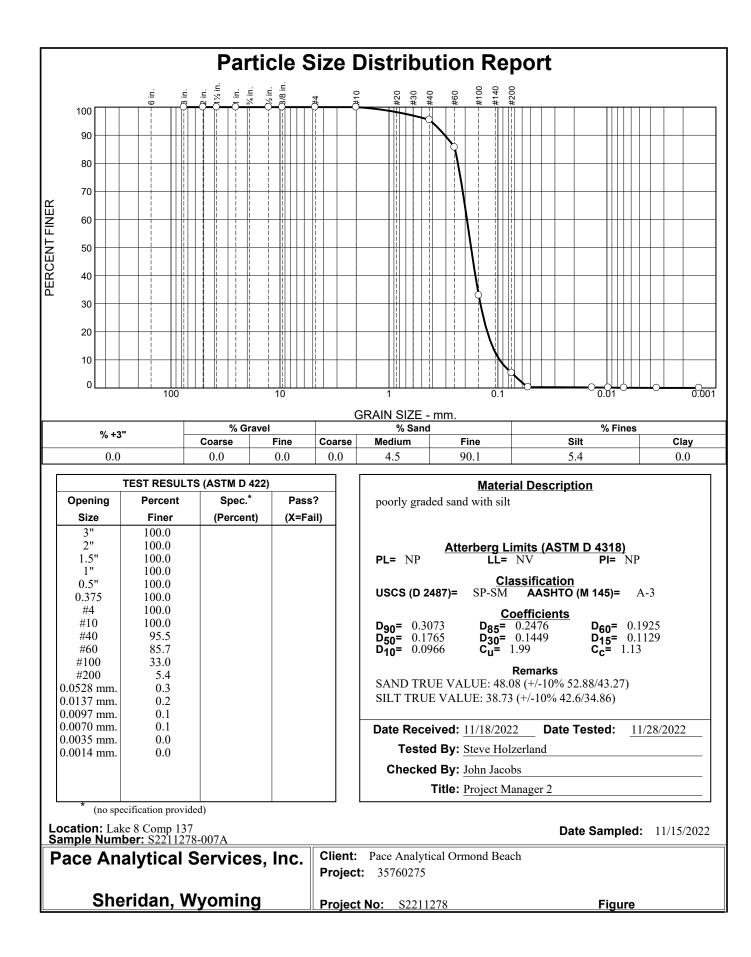

	Analytical Orn	nond Beach					
Project: 357							
	ber: S2211278 ike 9 Comp 15						
	ber: S2211278						
-	cription: poor		with silt				
	: 11/14/2022 2		with Silt				
•	ed: 11/18/2022			LL: NV	7	PI: NP	
	ification: SP-S			AASH1	O Classificatio	on: A-3	
Grain Size T	est Method: A	STM D 422					
esting Rem	arks: SAND 7	RUE VALUE	: 48.08 (+/-10)% 52.88/43.	.27)		
		RUE VALUE:	38.73 (+/-10%		/		
•	Steve Holzerlan	d			ate: 11/28/2022		
Checked By	: John Jacobs				roject Manager	: 2	
			Sie	eve Test Dat	а		
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer		
Sample and Tare (grams)	(grams)	Opening Size	Retained (grams)	Weight (grams)	Finer		
Sample and Tare		Opening	Retained (grams) 0.00	Weight (grams) 0.00	Finer 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2"	Retained (grams) 0.00 0.00	Weight (grams) 0.00 0.00	Finer 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3"	Retained (grams) 0.00	Weight (grams) 0.00	Finer 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5"	Retained (grams) 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00	Finer 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1"	Retained (grams) 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5"	Retained (grams) 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams) 55.02	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.5		
Sample and Tare (grams) 55.02	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 99.5 94.3		

Hydrometer tes Percent passing Weight of hydro Table of compo Temp., deg. C Comp. corr.: Meniscus corre Specific gravity	g #200 based ometer sampl site correctio : 21 -6 ction only = 0 of solids = 2	upon comp le =51.89 on values: .0 2 .0 - 0.0	200	drometer ⁻ 5.0	Γest Dat	ta			
•			2.0						
•									
Specific gravity Hydrometer typ		2.65							
		h equation:	L = 16.294964	- 0.164 x R	m				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	18.0	8.0	2.0	0.0140	8.0	15.0	0.0542	0.2	
15.00	18.0	7.0	1.0	0.0140	7.0	15.1	0.0141	0.1	
30.00	19.0	7.0	1.0	0.0138	7.0	15.1	0.0098	0.1	
60.00	19.0	6.5	0.5	0.0138	6.5	15.2	0.0070	0.0	
240.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0035	0.0	
1440.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0014	0.0	
			Fra	ctional Co	mponer	nts			

Cobbles		Gravel		Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.5	5.2	89.3	95.0	5.0	0.0	5.0	

	D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0	.0749	0.0897	0.1021	0.1132	0.1332	0.1514	0.1691	0.1877	0.2370	0.2569	0.2894	0.5577

Fineness Modulus	c _u	Cc
0.77	2.09	1.05

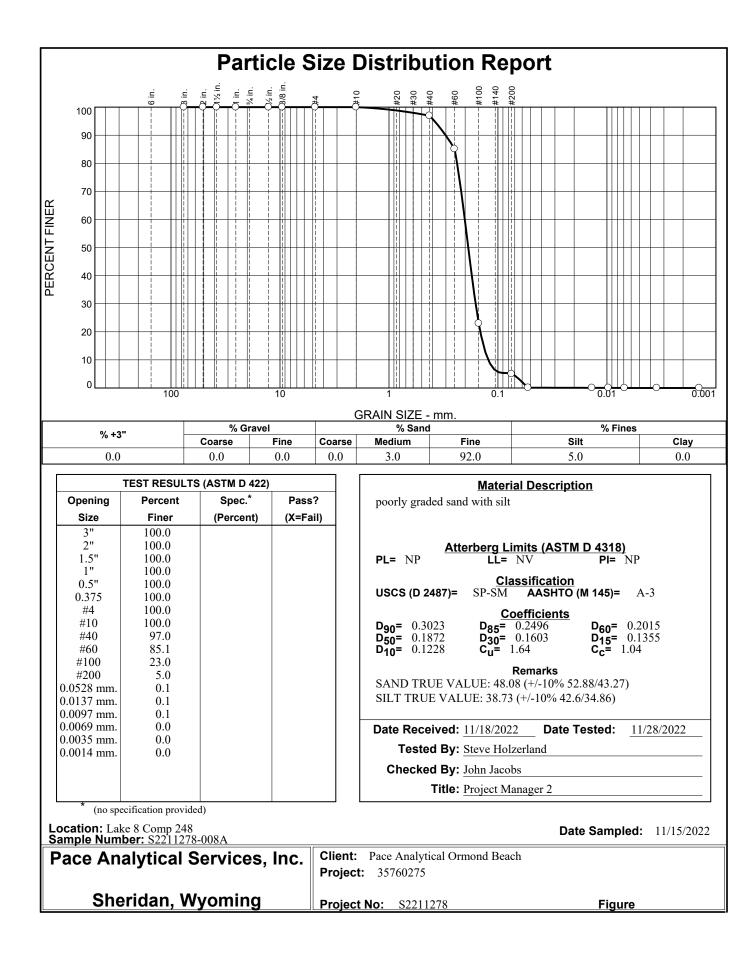

	Analytical Orm	10nd Beach					
Project: 357	•	Iona Deach					
•	ber: S2211278	3					
	ike 9 Comp 7 9						
Sample Num	nber: S2211278	8-006A					
laterial Des	cription: poorl	ly graded sand	with silt				
-	e: 11/14/2022 3						
	ed: 11/18/2022			LL: NV		PI: NP	
	ification: SP-S			AASHI	O Classificat	ion: A-3	
	est Method: A		40.00 () / 10		27		
esting Rem	narks: SAND T						
Feeted Dur (SILT IF Steve Holzerlan	RUE VALUE:	38./3 (+/-10%) ate: 11/28/202	2	
	sleve Holzerlan	a		Test Da	ate: 11/28/202	.2	
-				Title: D	mainat Managa		
Checked By Dry Sample	: John Jacobs	Sieve	Weight	eve Test Dat Sieve		r 2	
Checked By Dry	: John Jacobs Tare		Weight Retained	eve Test Dat Sieve Weight		er 2	
Dry Sample and Tare	: John Jacobs	Sieve Opening	Weight	eve Test Dat Sieve	a Percent	r 2	
Checked By Dry Sample and Tare (grams)	: John Jacobs Tare (grams)	Sieve Opening Size	Weight Retained (grams)	eve Test Dat Sieve Weight (grams)	a Percent Finer	er 2	
Checked By Dry Sample and Tare (grams)	: John Jacobs Tare (grams)	Sieve Opening Size 3"	Weight Retained (grams) 0.00	Sieve Sieve Weight (grams) 0.00	a Percent Finer 100.0	er 2	
Checked By Dry Sample and Tare (grams)	: John Jacobs Tare (grams)	Sieve Opening Size 3" 2"	Weight Retained (grams) 0.00 0.00	Sieve Weight (grams) 0.00 0.00	a Percent Finer 100.0 100.0	er 2	
Checked By Dry Sample and Tare (grams)	: John Jacobs Tare (grams)	Sieve Opening Size 3" 2" 1.5"	Weight Retained (grams) 0.00 0.00 0.00	Sieve Test Dat Sieve Weight (grams) 0.00 0.00 0.00	a Percent Finer 100.0 100.0 100.0	er 2	
Checked By Dry Sample and Tare (grams)	: John Jacobs Tare (grams)	Sieve Opening Size 3" 2" 1.5" 1"	Weight Retained (grams) 0.00 0.00 0.00 0.00	Sieve Weight (grams) 0.00 0.00 0.00 0.00 0.00	a Percent Finer 100.0 100.0 100.0 100.0	er 2	
Checked By Dry Sample and Tare (grams)	: John Jacobs Tare (grams)	Sieve Opening Size 3" 2" 1.5" 1" 0.5"	Weight Retained (grams) 0.00 0.00 0.00 0.00 0.00	Sieve Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00	a Percent Finer 100.0 100.0 100.0 100.0 100.0	er 2	
Checked By Dry Sample and Tare (grams)	: John Jacobs Tare (grams)	Sieve Opening Size 3" 2" 1.5" 1" 0.5" 0.375	Weight Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Sieve Test Dat Sieve Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	a Percent Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	er 2	
Checked By Dry Sample and Tare (grams)	: John Jacobs Tare (grams)	Sieve Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4	Weight Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Sieve Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	a Percent Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	er 2	
Dry Sample and Tare (grams) 160.80	Tare (grams) 0.00	Sieve Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10	Weight Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.07 7.63	Sieve Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	a Percent Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.9 91.3	er 2	
Dry Sample and Tare (grams) 160.80	Tare (grams) 0.00	Sieve Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40	Weight Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Sieve Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	a Percent Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.9	er 2	

			Hv	drometer	Fest Dat	ta			
Hydrometer tes	t uses materi	ial passing #			l oot Du				
Percent passing	g #200 based	upon comp	lete sample = 5	5.3					
Weight of hydro	ometer sampl	e = 100.05							
Table of compo	site correctio	on values:							
Temp., deg. (Comp. corr.:	C: 23 -5		4.0 4.8						
Meniscus corre	ction only =	0.0							
Specific gravity	of solids = 2	.65							
Hydrometer typ									
Hydrometer e	effective dept	h equation:	L = 16.294964	- 0.164 x R	m				
	-	•							
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
•		Actual	Corrected						
Time (min.)	(deg. C.)	Actual Reading	Corrected Reading	к	Rm	Depth	(mm.)	Finer	
Time (min.) 1.00	(deg. C.) 18.0	Actual Reading 7.0	Corrected Reading 1.7	K 0.0140	Rm 7.0	Depth 15.1	(mm.) 0.0545	Finer 0.1	
Time (min.) 1.00 15.00	(deg. C.) 18.0 18.0	Actual Reading 7.0 7.0	Corrected Reading 1.7 1.7	к 0.0140 0.0140	Rm 7.0 7.0	Depth 15.1 15.1	(mm.) 0.0545 0.0141	Finer 0.1 0.1	
Time (min.) 1.00 15.00 30.00	(deg. C.) 18.0 18.0 19.0	Actual Reading 7.0 7.0 6.5	Corrected Reading 1.7 1.7 1.2	K 0.0140 0.0140 0.0138	Rm 7.0 7.0 6.5	Depth 15.1 15.1 15.2	(mm.) 0.0545 0.0141 0.0098	Finer 0.1 0.1 0.1	
Time (min.) 1.00 15.00 30.00 60.00	(deg. C.) 18.0 18.0 19.0 19.0	Actual Reading 7.0 7.0 6.5 6.0	Corrected Reading 1.7 1.7 1.2 0.7	K 0.0140 0.0140 0.0138 0.0138	Rm 7.0 6.5 6.0	Depth 15.1 15.1 15.2 15.3	(mm.) 0.0545 0.0141 0.0098 0.0070	Finer 0.1 0.1 0.1 0.1 0.0	
Time (min.) 1.00 15.00 30.00 60.00 240.00	(deg. C.) 18.0 18.0 19.0 19.0 19.0	Actual Reading 7.0 7.0 6.5 6.0 5.5	Corrected Reading 1.7 1.7 1.2 0.7 0.2 0.2	K 0.0140 0.0140 0.0138 0.0138 0.0138	Rm 7.0 7.0 6.5 6.0 5.5 5.5	Depth 15.1 15.2 15.3 15.4 15.4	(mm.) 0.0545 0.0141 0.0098 0.0070 0.0035	Finer 0.1 0.1 0.1 0.0 0.0	

Cobbles	Gravel				Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total		
0.0	0.0	0.0	0.0	0.0	1.1	93.6	94.7	5.3	0.0	5.3		

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0733	0.1111	0.1261	0.1366	0.1527	0.1661	0.1791	0.1924	0.2239	0.2340	0.2462	0.3133

Fineness Modulus	c _u	С _с		
0.78	1.73	1.09		

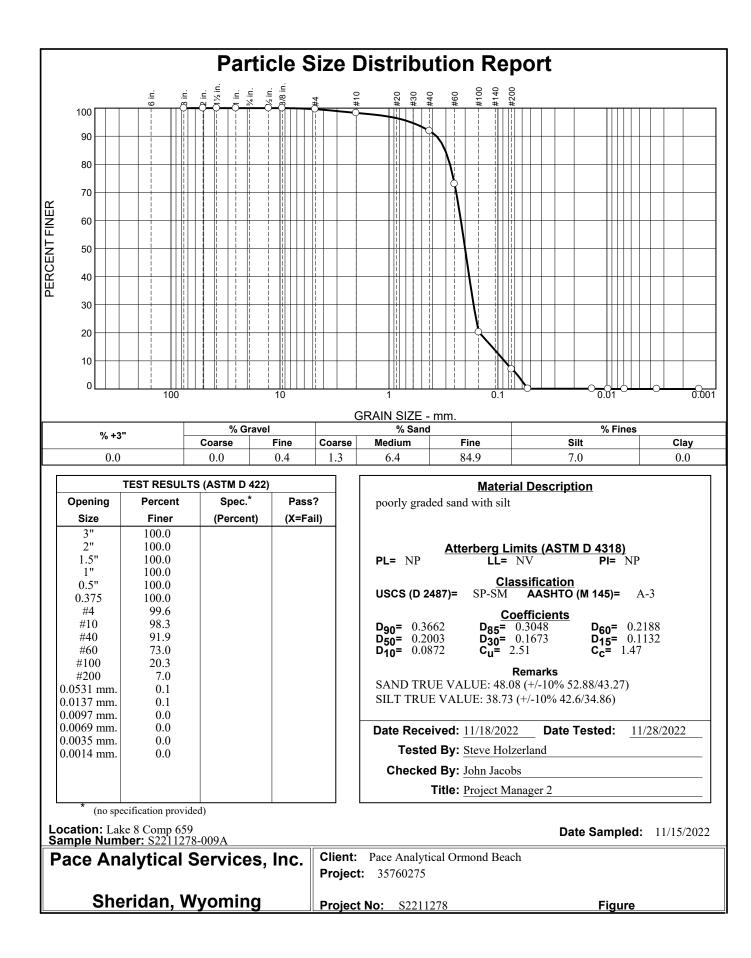

liont Dage	Analytical Orm	ond Beach					
Project: 357	•	Ionu Beach					
•	ber: S2211278						
•	ike 8 Comp 13'						
	nber: S2211278						
Aaterial Des	cription: poorl	y graded sand	with silt				
Sample Date	: 11/15/2022 9	:20					
Date Receiv	ed: 11/18/2022	PL: NP		LL: NV		PI: NP	
	ification: SP-S			AASH	TO Classificatio	on: A-3	
	est Method: A						
esting Rem	arks: SAND 7						
		UE VALUE:	38.73 (+/-10%		/		
-	steve Holzerlan	d			ate: 11/28/2022		
Checked By	John Jacobs				Project Manager	2	
			Sie	eve Test Dat	a		
Dry							
Sample	_	Sieve	Weight	Sieve	_ /		
Sample and Tare	Tare (grams)	Opening	Retained	Weight	Percent Finer		
Sample and Tare (grams)	(grams)		Retained (grams)	Weight (grams)	Finer		
Sample and Tare		Opening Size 3"	Retained (grams) 0.00	Weight (grams) 0.00	Finer 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2"	Retained (grams) 0.00 0.00	Weight (grams) 0.00 0.00	Finer 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3"	Retained (grams) 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00	Finer 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1"	Retained (grams) 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5"	Retained (grams) 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1"	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams) 74.84	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.32	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.5		
Sample and Tare (grams) 74.84	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40 #60	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.5 85.7		
Sample and Tare (grams) 74.84	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.32	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.5		

			Ну	drometer ⁻	Fest Dat	a			
Hydrometer tes	t uses mater	ial passing #	#200						
Percent passing	g #200 based	upon comp	lete sample = :	5.4					
Weight of hydro	ometer samp	le =51.26							
Table of compo	site correctio	on values:							
Temp., deg. C Comp. corr.:	23 -5		24.0 -4.8						
Meniscus corre	ction only =	0.0							
Specific gravity	of solids = 2	2.65							
Hydrometer typ Hydrometer e		th equation:	L = 16.294964	- 0.164 x R	m				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	20.0	8.0	2.7	0.0136	8.0	15.0	0.0528	0.3	
15.00	20.0	7.0	1.7	0.0136	7.0	15.1	0.0137	0.2	
30.00	20.0	6.5	1.2	0.0136	6.5	15.2	0.0097	0.1	
60.00	19.0	6.0	0.7	0.0138	6.0	15.3	0.0070	0.1	
240.00	19.0	5.5	0.2	0.0138	5.5	15.4	0.0035	0.0	
1440.00	19.0	5.5	0.2	0.0138	5.5	15.4	0.0014	0.0	
			Fra	ctional Co	mponer	its			

Cobbles		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	4.5	90.1	94.6	5.4	0.0	5.4

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0732	0.0966	0.1129	0.1253	0.1449	0.1611	0.1765	0.1925	0.2329	0.2476	0.3073	0.4115

Fineness Modulus	c _u	С _с
0.81	1.99	1.13

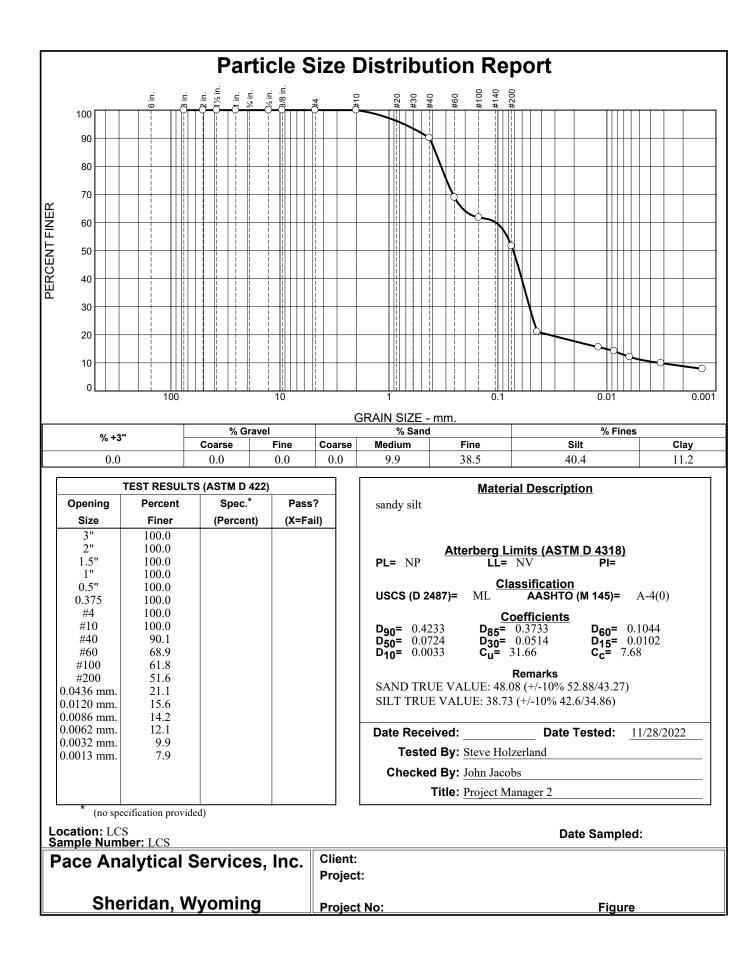

	GRA	IN SIZE DIS	STRIBUTIO	N TEST DATA	A	11/29/202
nalytical Orm	ond Beach					
0275						
1						
		with silt				
				_		
			AASH	O Classificatio	on: A-3	
		. 40.00 () / 10	0/ 52 00/42	27)		
		30.73 (+/-10%				
	u					
John Jacobs		0:-			2	
		516	ve Test Dat	a		
Tare	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer		
,		,				
0.00	-					
	-					
	0.375	0.00	0.00	100.0		
		0.00	0.00	100.0		
				100.0		
	#4 #10					
0.00	#10	0.00	0.00	100.0		
0.00	#10 #40	0.00 3.05	0.00 0.00	100.0 97.0		
0.00	#10 #40 #60	0.00 3.05 11.82	0.00 0.00 0.00	100.0 97.0 85.1		
0.00	#10 #40	0.00 3.05	0.00 0.00	100.0 97.0		
	er: S2211278 e 8 Comp 248 per: S2211278 ription: poorl 11/15/2022 1 d: 11/18/2022 cation: SP-SI st Method: A rks: SAND T SILT TR eve Holzerland John Jacobs	er: S2211278 e 8 Comp 248 per: S2211278-008A ription: poorly graded sand 11/15/2022 10:15 d: 11/18/2022 PL: NP ication: SP-SM st Method: ASTM D 422 rks: SAND TRUE VALUE SILT TRUE VALUE: eve Holzerland John Jacobs Sieve Tare (grams)	er: S2211278 e 8 Comp 248 per: S2211278-008A ription: poorly graded sand with silt 11/15/2022 10:15 d: 11/18/2022 PL: NP ication: SP-SM st Method: ASTM D 422 rks: SAND TRUE VALUE: 48.08 (+/-10 SILT TRUE VALUE: 38.73 (+/-10% eve Holzerland John Jacobs Size Weight Retained (grams) 0.00 3" 0.00 2" 0.00 1.5" 0.00 1" 0.00	er: S2211278 e 8 Comp 248 per: S2211278-008A ription: poorly graded sand with silt 11/15/2022 10:15 d: 11/18/2022 PL: NP LL: NV fcation: SP-SM AASHT st Method: ASTM D 422 rks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43. SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86 eve Holzerland Test Da John Jacobs Title: P Sieve Test Dat Volumination Size Weight Sieve (grams) 0.00 3" 0.00 0.00 2" 0.00 0.00 1.5" 0.00 0.00 1" 0.00 0.00	er: S2211278 e 8 Comp 248 e 8 Comp 248 rer: S2211278-008A ription: poorly graded sand with silt 11/15/2022 10:15 d: 11/18/2022 PL: NP LL: NV ication: SP-SM AASHTO Classification st Method: ASTM D 422 rks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43.27) SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) eve Holzerland Test Date: 11/28/2022 John Jacobs Title: Project Manager Sieve Test Data Sieve Test Data Sieve Test Data Sieve Test Data Sieve Weight Sieve (grams) Size (grams) (grams) Finer 0.00 3" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0	er: S2211278 e 8 Comp 248 ber: S2211278-008A ription: poorly graded sand with silt 11/15/2022 10:15 d: 11/18/2022 PL: NP LL: NV PI: NP ication: SP-SM AASHTO Classification: A-3 st Method: ASTM D 422 rks: SAND TRUE VALUE: 48.08 (+/-10% 52.88/43.27) SILT TRUE VALUE: 38.73 (+/-10% 42.6/34.86) eve Holzerland Test Date: 11/28/2022 John Jacobs Title: Project Manager 2 Sieve Test Data Veight Sieve Test Data Sieve Test Data Veight (grams) Percent (grams) 0.00 3" 0.00 0.00 100.0 2" 0.00 0.00 100.0 1.5" 0.00 0.00 100.0

Hydrometer test Percent passing Weight of hydro Table of compo Temp., deg. C Comp. corr.: Meniscus corre	g #200 based ometer sampl site correction : 21 -6	upon compl le =100.05 on values: .0 2 .0 -	200	drometer ⁻ 5.0	Test Dat	ta			
Specific gravity Hydrometer typ									
Hydrometer e	ffective dept	h equation:	L = 16.294964	- 0.164 x R	m				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	20.0	8.0	2.0	0.0136	8.0	15.0	0.0528	0.1	
15.00	20.0	7.0	1.0	0.0136	7.0	15.1	0.0137	0.1	
30.00	20.0	7.0	1.0	0.0136	7.0	15.1	0.0097	0.1	
60.00	20.0	6.0	0.0	0.0136	6.0	15.3	0.0069	0.0	
240.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0035	0.0	
1440.00	19.0	6.0	0.0	0.0138	6.0	15.3	0.0014	0.0	
			Fra	ctional Co	mponer	its			

Cabbles	Cobbles Gravel				Sa	nd		Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	3.0	92.0	95.0	5.0	0.0	5.0

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0749	0.1228	0.1355	0.1450	0.1603	0.1738	0.1872	0.2015	0.2370	0.2496	0.3023	0.3816

1	Fineness Modulus	c _u	Cc
	0.90	1.64	1.04


Client: Pace	Analytical Orm	ond Beach					
Project: 357		Iona Deach					
•	ber: S2211278	5					
	ke 8 Comp 659						
Sample Nurr	nber: S2211278	8-009A					
Material Des	cription: poorl	y graded sand	with silt				
Sample Date	: 11/15/2022 1	1:45					
	ed: 11/18/2022			LL: NV		PI: NP	
USCS Class	ification: SP-S	М		AASH1	FO Classificatio	n: A-3	
	est Method: A						
Testing Rem	arks: SAND T		· ·		/		
		RUE VALUE:	38.73 (+/-10%		/		
	steve Holzerlan	d			ate: 11/28/2022		
Checked By	John Jacobs				roject Manager	2	
			Sie	eve Test Dat	а		
Dry							
Sample	_	Sieve	Weight	Sieve			
Sample and Tare	Tare (grams)	Opening	Retained	Weight	Percent Finer		
Sample and Tare (grams)	(grams)	Opening Size	Retained (grams)	Weight (grams)	Finer		
Sample and Tare		Opening Size 3"	Retained (grams) 0.00	Weight (grams) 0.00	Finer 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2"	Retained (grams) 0.00 0.00	Weight (grams) 0.00 0.00	Finer 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5"	Retained (grams) 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00	Finer 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1"	Retained (grams) 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5"	Retained (grams) 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.36	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Finer 100.0 100.0 100.0 100.0 100.0 100.0 99.6		
Sample and Tare (grams) 92.99	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.36 1.23	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 99.6 98.3		
Sample and Tare (grams)	(grams)	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.36 1.23 4.87	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 99.6 98.3 91.9		
Sample and Tare (grams) 92.99	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40 #60	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.36 1.23 4.87 14.30	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 99.6 98.3 91.9 73.0		
Sample and Tare (grams) 92.99	(grams) 0.00	Opening Size 3" 2" 1.5" 1" 0.5" 0.375 #4 #10 #40	Retained (grams) 0.00 0.00 0.00 0.00 0.00 0.36 1.23 4.87	Weight (grams) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Finer 100.0 100.0 100.0 100.0 100.0 100.0 99.6 98.3 91.9		

			Ну	drometer 1	Fest Dat	ta			
Hydrometer tes	t uses mater	ial passing #	200						
Percent passing	g #200 based	upon compl	ete sample = 7	7.0					
Weight of hydro	meter samp	le =74.62							
Table of compo	site correctio	on values:							
Temp., deg. C			2.0						
Comp. corr.:	-6	.0 -	5.7						
Meniscus corre	ction only =	0.0							
Specific gravity	of solids = 2	2.65							
Hydrometer typ	e = 152H								
Hydrometer e	ffective dept	th equation:	L = 16.294964	- 0.164 x R	m				
Elapsed	Temp.	Actual	Corrected			Eff.	Diameter	Percent	
Time (min.)	(deg. C.)	Reading	Reading	к	Rm	Depth	(mm.)	Finer	
1.00	20.0	7.0	1.0	0.0136	7.0	15.1	0.0531	0.1	
15.00	20.0	7.0	1.0	0.0136	7.0	15.1	0.0137	0.1	
				0.0.00	1.0	-	0.0157	0.1	
30.00	20.0	6.0	0.0	0.0136	6.0	15.3	0.0097	0.0	
30.00 60.00	20.0 20.0	6.0 6.0	0.0 0.0			15.3 15.3			
				0.0136	6.0		0.0097	0.0	
60.00	20.0	6.0	0.0	0.0136 0.0136	6.0 6.0	15.3	0.0097 0.0069	0.0 0.0	
60.00 240.00	20.0 19.0	6.0 6.0	0.0 0.0 0.0	0.0136 0.0136 0.0138	6.0 6.0 6.0 6.0	15.3 15.3 15.3	0.0097 0.0069 0.0035	0.0 0.0 0.0	_

Cobbles		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.4	0.4	1.3	6.4	84.9	92.6	7.0	0.0	7.0

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0662	0.0872	0.1132	0.1479	0.1673	0.1836	0.2003	0.2188	0.2756	0.3048	0.3662	0.6333

Fineness Modulus	c _u	Cc
1.05	2.51	1.47

PL: NP	ber: LCS cription: sand	ły silt LL: NV							
	fication: ML	ASTM D 422		A	ASHTC) Classific	ation: A-4(0))	
		TRUE VALU	E: 48.08 (+/-	-10% 52.8	8/43.2	7)			
		RUE VALUE	: 38.73 (+/-1			11/20/2	000		
-	teve Holzerla	nd				e: 11/28/2			
пескей Бу.	John Jacobs			Sieve Tes		oject Mana	ger z		
_				Sleve Tes	i Dala				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Siev Weig (gran	ht	Percent Finer			
75.00	0.00	3"	0.00	0	.00	100.0			
		2"	0.00	0	.00	100.0			
		1.5"	0.00	0	.00	100.0			
		1"	0.00	0	.00	100.0			
		0.5"	0.00	0	.00	100.0			
		0.375	0.00		.00	100.0			
		#4	0.00		.00	100.0			
		#10	0.00		.00	100.0			
75.00	0.00	#40	7.39		.00	90.1			
		#60	15.94		.00	68.9			
		#100	5.33		.00	61.8			
		#200	7.62	0	.00	51.6			
				Irometer 1	Fest Da	ata			
		ial passing #20 upon complet		1.6					
Veight of hyd	rometer samp	le =75.0	•						
	perature corr correction (flu	ection id density and i	meniscus hei	ight) at 20	dea. C	= -6.33			
leniscus cori	rection only =	0.0		3 ,	j				
pecific gravit lydrometer ty	ty of solids = 2 ne = 152H	2.65							
		th equation: L =	16.294964 -	0.164 x R	m				
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	20.0	37.0	30.6	0.0136	37.0	10.2	0.0436	21.1	
15.00	20.0	29.0	22.6	0.0136	29.0	11.5	0.0120	15.6	
	20.0	27.0	20.6	0.0136	27.0	11.9	0.0086	14.2	
30.00	20.0	24.0	17.6	0.0136	24.0	12.4	0.0062	12.1	
60.00			144	0.0138	21.0	12.9	0.0032	9.9	
	19.0 19.0	21.0 18.0	14.4 11.4	0.0138	18.0	13.3	0.0013	7.9	

$ \begin{array}{ c c c c c c c c } \hline Coarse & Fine & Total & Coarse & Medium & Fine & Total & Silt & Clay & Total \\ \hline Coarse & Fine & Total & O.0 & O$	Cobbles Coarse Fine Total Coarse Medium Fine Total Silt Clay Total 0.0 0.0 0.0 0.0 0.0 9.9 38.5 48.4 40.4 11.2 51.6 D5 D10 D15 D20 D30 D40 D50 D60 D80 D85 D90 D95 0.0033 0.0102 0.0340 0.0514 0.0605 0.0724 0.1044 0.3326 0.3733 0.4233 0.7276					Fra	actional	Compone	ents				
Coarse Fine Total Coarse Medium Fine Total Silt Clay Total 0.0 0.0 0.0 0.0 0.0 9.9 38.5 48.4 40.4 11.2 51.6 D5 D10 D15 D20 D30 D40 D50 D60 D80 D85 D90 D95 0.0033 0.0102 0.0340 0.0514 0.0605 0.0724 0.1044 0.3326 0.3733 0.4233 0.7276	Coarse Fine Total Coarse Medium Fine Total Silt Clay Total 0.0 0.0 0.0 0.0 0.0 9.9 38.5 48.4 40.4 11.2 51.6 D5 D10 D15 D20 D30 D40 D50 D60 D80 D85 D90 D95 0.0033 0.0102 0.0340 0.0514 0.0605 0.0724 0.1044 0.3326 0.3733 0.4233 0.7276	Cobbles					1		Т				
D5 D10 D15 D20 D30 D40 D50 D60 D80 D85 D90 D95 0.0033 0.0102 0.0340 0.0514 0.0605 0.0724 0.1044 0.3326 0.3733 0.4233 0.7276 Fineness C _u C _c	D5 D10 D15 D20 D30 D40 D50 D60 D80 D85 D90 D95 0.0033 0.0102 0.0340 0.0514 0.0605 0.0724 0.1044 0.3326 0.3733 0.4233 0.7276 Fineness C _u C _c												
0.0033 0.0102 0.0340 0.0514 0.0605 0.0724 0.1044 0.3326 0.3733 0.4233 0.7276 Fineness Modulus C _u C _c	0.0033 0.0102 0.0340 0.0514 0.0605 0.0724 0.1044 0.3326 0.3733 0.4233 0.7276 Fineness Modulus C _u C _c	0.0	0.0	0.0	0.0	0.0	0 9	9.9	38.5	48.4	40.4	11.2	51.6
0.0033 0.0102 0.0340 0.0514 0.0605 0.0724 0.1044 0.3326 0.3733 0.4233 0.7276 Fineness Modulus C _u C _c	0.0033 0.0102 0.0340 0.0514 0.0605 0.0724 0.1044 0.3326 0.3733 0.4233 0.7276 Fineness Modulus C _u C _c												
Fineness C _u C _c	Fineness C _u C _c	D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D95
Modulus ^{Cu} ^C C	Modulus ^{Cu} ^C C		0.0033	0.0102	0.0340	0.0514	0.0605	0.0724	0.1044	0.3326	0.3733	0.4233	0.7276
		ineness Nodulus	c _u	c _c									
			31.66	7.68									

Ч В
aĝe
o,
- Th

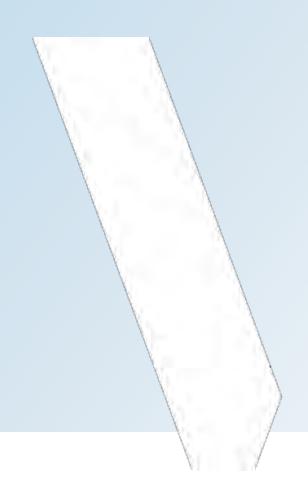
č č 020000 \$ le owner laboratury.

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.	nd signature m	oler's name ar	ig site, samp tion is availa	the samplin	ocation/name of the since the second s	dentiality, lu ered como	*In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature n	This ch	t
ℜ or N Samples Intact Y or N	on Ice	Received	or (R)	ly Seal Y	Custody Seal	<u> </u>	Cooler Temperature on Receipt	Cooler Te	
								ω	1.0
					-			2	N
hh:al	11/18/22 6		- Ar.(Nmet 1	11/12 (700		Pard 1259	1	T_
	Date/Time		Y	Received By	Date/Time		Released By	Transfers	
									1
	X	94792944999 947994499	Solid 1	35760275009	11/15/2022 11:45 35	PS 1	LAKE 8 Comp 659	9 LAKE 8	l G
	X	******	Solid 1	760275008	11/15/2022 10:15 35760275008	PS 1	LAKE 8 Comp 248		0
	×	******	Solid 1	35760275007	11/15/2022 09:20 35	PS 1	LAKE 8 Comp 137		Ī
	×		Solid 1	35760275006	11/14/2022 15:20 35	PS 1	LAKE 9 Comp 7 9 10 13		6
	X		Solid 1	35760275005	11/14/2022 14:20 35	PS 1	LAKE 9 Comp 15 16 19 22	5 LAKE 9	[UN
	×	*****	Solid 1	35760275004	11/14/2022 13:05 35	t Sd	LAKE 9 Comp 17 18 20 21	4 LAKE 9	4
	X		Solid 1	35760275003	11/14/2022 11:00 35	PS 1	LAKE 9 Comp 8 11 12 14	3 LAKE 9	Tω
	×		Solid 1	35760275002	11/14/2022 10:00 35	PS 1	LAKE 9 Comp 256	2 LAKE 9	ĪΝ
- 8721/278	X	21-22-24 0	Solid 1	35760275001	11/14/2022 09:10 35	PS 1	LAKE 9 Comp 134	1 LAKE 9	
	Grain/Sie	999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 99 1994 - 99 - 99 - 99 - 99 - 99 - 99 - 99	Other		Collect Date/Inte	Sample o			172
	69	Preserved Container						18.18.18.18.18.18.18.18.18.18.18.18.18.1	. [
	Drganic M								
	atter,								
	Moist			Sheridan, WY 82801 Phone (307)672-8945	Sheridan, Phone (3(
	Jre		tan WY	Pace Analytical Sheridan WY 1673 Terra Avenue	Pace Analytical Shu 1673 Terra Avenue		ourido	Rebecca Lourido	
Requested Analysis					Sebcontract To			Report To	1
11/16/2022 Results Requested By:	Owner Received Date:	Owne	lestoratio	City of Naples Lake Restoratio		Workorder Name:	Workorder: 35760275 Worl	Workord	
Yes No	State Of Origin: FL	State Cert. I	into eCOC.	re-Logged i	Samples Pre-Logged into eCOC.				
81		n sen ha anna ann ann ann ann an shainn ann ann ann ann ann ann ann ann ann			Custody	nain of	Internal Transfer Chain of Custody	Interr	
					•	•		4 • 1	

Internal Transfer Chain of Custody

Pace Analytical Pace Analytical 1673 Terra Avenue Sheridan, WY 82801

ATTACHMENT A


ph: (307) 672-8945

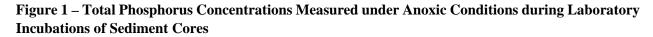
ANALYTICAL QC SUMMARY REPORT

CLIENT:	Pace Analytical Ormond Beach			Date:	11/29/202	22	
Work Orde	er: S2211278			Report ID:	S221127	8001	
Project:	35760275			•			
Organ	ic Matter	Sample Type LCS		Units: %			
	CONTROL (11/29/22 14:39)	RunNo: 206022	2				
	Analyte	Result	RL	Spike Ref Sar	p %REC	% Rec Limits	Qual
	Organic Matter	2.20	0.100	2.53	87.0	80 - 120	

North Lake and South Lake Sediment Flux Analysis

A pair of intact sediment cores were collected from North Lake (Pond 8, P-8) and South Lake (Pond 9, P-9) on September 12, 2022 in clear polycarbonate cylinders (7.3 cm diameter, 30 cm long). Sampling locations were chosen based on the amount of available sediment at locations close to control structures (**Appendix 1**). At the time of sampling, in-situ physicochemical data were recorded using a YSI. Parameters included water temperature, dissolved oxygen (DO), pH, specific conductivity, salinity, and turbidity. Nearbottom ambient lake water was collected at the time of coring and filtered for use during sediment nutrient flux incubations.

Sediment flux analyses were performed in the WSP USA Flux Laboratory in accordance with Standard Operating Procedure (SOP) Wood-SFLUX-002 Rev. 9 (**Appendix 2**). Sediment cores were prepared and incubated in two sets of two cores, representing aerobic and anoxic conditions. To minimize biological activity, cores were kept in the dark, and temperatures were controlled in the range of 23 to 27 degrees C. Water column samples for each core were collected at 0, 24, 48, 96, 168, and 216 hours and analyzed for TP, ammonia, and iron in a NELAC certified analytical laboratory (laboratory reports provided in **Appendix 3**). Turbidity values were monitored throughout incubation to examine the timing of sediment core equilibrium before conducting flux measurements. DO and pH were also monitored during the study to confirm that appropriate redox conditions were being met throughout the incubation period.


Sediment nutrient flux rates were estimated using the nutrient release rate (NRR) equation and the slopes were calculated from the concentration vs. time curve as described in the flux SOP. Typically, the slope method is considered more conservative and more appropriate, especially if the curves are non-linear. Annual internal nutrient loads were estimated at both stations and as spatial averages following the methods described by Ogdahl et al. (2014). Overall average loads were calculated from average flux rates representing the average anoxic and aerobic rates for both stations.

Sediment cores collected at the North Lake (Pond 8) appeared to be composed primarily of brown, tan, and gray sand with trace shell and detrital material, while cores collected at the South Lake (Pond 9) appeared to be composed of a brown, tan, and gray sand mixture with trace detrital material and dark brown sediments. Detailed descriptions and photographs of the sediment cores used during flux analyses can be found in **Appendix 4**. **Table 1** provides the in-situ water quality data measured at the time of sediment core collection. In-situ water quality data measurements for both ponds were taken at 0.3 meters. Overall, measured in-situ data was similar between both ponds. Water temperatures ranged from 28.04 to 29.63 °C, and the observed pH values ranged from 7.17 to 7.32. Dissolved oxygen values suggested that each pond approaches anoxic values at times. Turbidity measurements collected at the time of sampling ranged from 3.34 to 2.35 NTU and salinity ranged from 0.26 to 0.27 ppt.

Station	Sample Depth (m)	Water Temperature (°C)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	Specific Conductance (us/cm)	Salinity (ppt)	pH (su)	Turbidity (NTU)
Pond 8	0.3	28.04	1.7	22.1	554	0.27	7.17	3.34
Pond 9	0.3	29.63	2.49	33.2	553	0.26	7.32	2.35

Table 1 – Ranges	of In-Site Sa	ample Profile	Water Quality	Data at Each Station
Table I Ranges	or in pite be	ampic i i oinc	Trater Quanty	Data at Latin Station

Figures 1 through 6 display non-linear TP, ammonia, and iron concentration flux curves representing anoxic and aerobic sediment core conditions. TP concentrations in sediment cores P8-1 and P9-1 analyzed under anoxic conditions displayed an initial peak at 48 hours. Core P8-1 concentrations plateaued after their initial increase at hour 48 until hour 168, where they decreased to near zero. In contrast, core P9-1 decreased after hour 48 to the end of the incubation period. Aerobic sediment core P8-A had an initial peak at 24 hours, then stayed relatively constant until decreasing after hour 168. P9-A peaked at the 48-hour mark, followed by a secondary peak at the 168-hour mark.

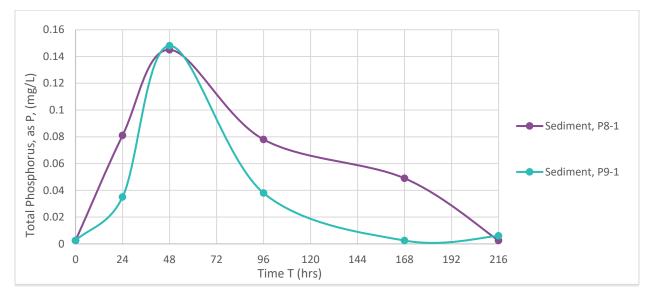
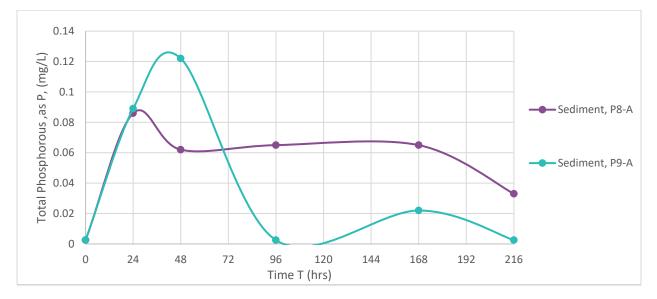
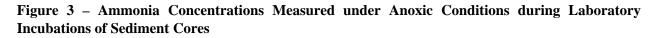




Figure 2 – Total Phosphorus Concentrations Measured under Aerobic Conditions during Laboratory Incubations of Sediment Cores

Ammonia flux from the lake sediments represents the dissolved species of nitrogen that is mineralized from organic nitrogen and then released from the sediment into the water column by diffusion through the sediment-water interface. Ammonia is used as a proxy for total nitrogen since it approximates TN flux. Ammonia concentrations in sediment cores incubated under anoxic conditions displayed initial peaks at the 48-hour mark followed by secondary peaks at the 168-hour mark before remaining constant until the end of the incubation period. Aerobic sediment core P8-A displayed a peak at the 48-hour mark and then remained relatively constant until the end of the incubation period, while core P9-A displayed an initial peak at the 96-hour mark followed by a secondary peak at the 216-hour mark.

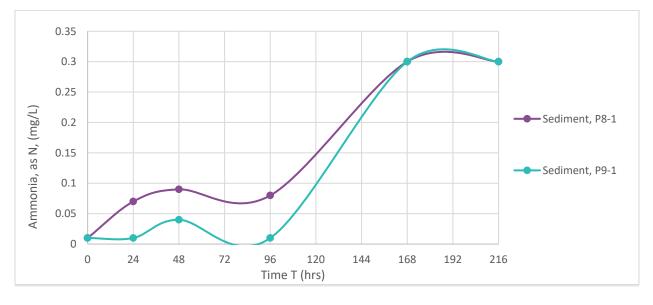
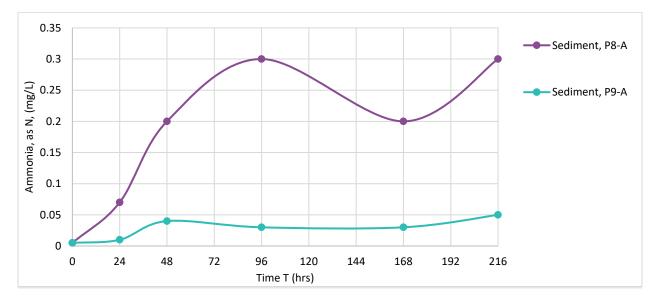
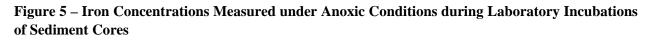




Figure 4 – Ammonia Concentrations Measured under Aerobic Conditions during Laboratory Incubations of Sediment Cores

Iron concentrations in anoxic sediment cores P8-1 and P9-1 displayed initial peaks at the 24-hour mark, then slightly increased to the end of the incubation period. Aerobic sediment core P8-A displays an initial peak at the 24-hour mark then steadily increases until the end of the incubation period. Sediment core P9-A displayed an initial peak at the 48-hour mark, then an additional peak at the 168-hour mark.

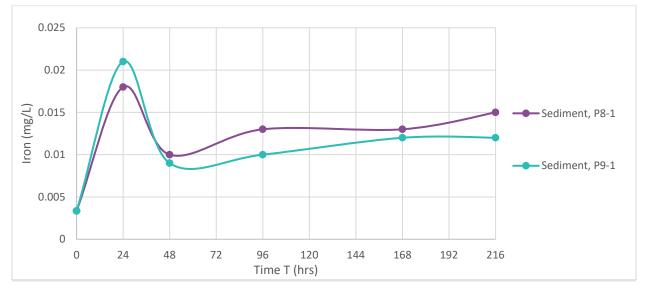
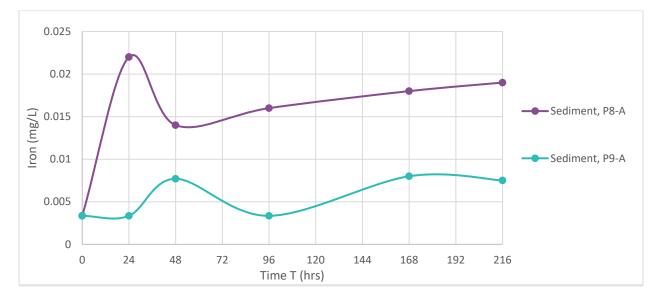



Figure 6 – Iron Concentrations Measured under Anoxic Conditions during Laboratory Incubations of Sediment Cores

Tables 2 and Table 3 provide summaries of anoxic and aerobic gross nutrient flux rates and internal loads for sediment core locations within the two ponds. Average flux rates were calculated for aerobic and anoxic rates and the values were applied to the entire surface area of each pond to estimate representative values for internal loading rates. The internal loads calculated for the Pond 8 sediment core incubated under anoxic

conditions were -8.84 lb/yr of TP, 57.66 lb/yr of ammonia, and 1.06 lb/yr of iron using the slope method. Using the NRR equation, internal loads were 0.00 lb/yr TP, 55.29 lb/yr ammonia, and 2.22 lb/yr iron. Under aerobic conditions, the Pond 8 sediment core displayed internal loads of 0.55 lb/yr TP, 45.03 lb/yr ammonia, and 1.56 lb/yr iron using the slope method. Using the NRR equation, the internal loads were 5.81 lb/yr TP, 56.24 lb/yr ammonia, and 2.98 lb/yr iron.

The internal loads calculated for the Pond 9 sediment core incubated under anoxic conditions were -22.60 lb/yr of TP, 159.39 lb/yr of ammonia, and 0.87 lb/yr of iron using the slope method. Using the NRR equation, internal loads were 1.65 lb/yr TP, 136.65 lb/yr ammonia, and 4.08 lb/yr iron. Under aerobic conditions, the Pond 9 sediment core displayed internal loads of -27.16 lb/yr TP, 16.03 lb/yr ammonia, and 1.90 lb/yr iron using the slope method. Using the NRR equation, the internal loads were 0.00 lb/yr TP, 21.20 lb/yr ammonia, and 1.96 lb/yr iron.

Site	REDOX (Oxygen) Conditions	Flux Parameter	Diffusive Flux Rate (mg/m2/d)	Load (lb/yr)
Sediment, P8-1	Anoxic	Total Phosphorus, as P, (mg/L)	-1.55	-8.84
Sediment, P9-1	Anoxic	Total Phosphorus, as P, (mg/L)	-1.60	-22.60
Average	Anoxic	Total Phosphorus, as P, (mg/L)	-1.57	-15.72
Sediment, P8-1	Anoxic	Ammonia, as N, (mg/L)	10.08	57.66
Sediment, P9-1	Anoxic	Ammonia, as N, (mg/L)	11.28	159.39
Average	Anoxic	Ammonia, as N, (mg/L)	10.68	108.53
Sediment, P8-1	Anoxic	Iron (mg/L)	0.18	1.06
Sediment, P9-1	Anoxic	Iron (mg/L)	0.06	0.87
Average	Anoxic	Iron (mg/L)	0.12	0.96
Sediment, P8-A	Aerobic	Total Phosphorus, as P, (mg/L)	0.10	0.55
Sediment, P9-A	Aerobic	Total Phosphorus, as P, (mg/L)	-1.92	-27.16
Average	Aerobic	Total Phosphorus, as P, (mg/L)	-0.91	-13.30
Sediment, P8-A	Aerobic	Ammonia, as N, (mg/L)	7.87	45.03
Sediment, P9-A	Aerobic	Ammonia, as N, (mg/L)	1.13	16.03
Average	Aerobic	Ammonia, as N, (mg/L)	4.50	30.53
Sediment, P8-A	Anoxic	Iron (mg/L)	0.27	1.56
Sediment, P9-A	Anoxic	Iron (mg/L)	0.13	1.90
Average	Anoxic	Iron (mg/L)	0.20	1.73
Overall Average	Anoxic and Aerobic	Total Phosphorus, as P, (mg/L)	-1.24	-14.51
Overall Average	Anoxic and Aerobic	Ammonia, as N, (mg/L)	7.59	69.53
Overall Average	Anoxic and Aerobic	Iron (mg/L)	0.16	1.35

Table 2 – Summary of Anoxic and Aerobic Flux Rates and Internal Loads (Slope Equation

Site	REDOX (Oxygen) Conditions	Flux Parameter	Diffusive Flux Rate (mg/m2/d)	Load (lb/yr)
Sediment, P8-1	Anoxic	Total Phosphorus, as P, (mg/L)	0.00	0.00
Sediment, P9-1	Anoxic	Total Phosphorus, as P, (mg/L)	0.12	1.65
Average	Anoxic	Total Phosphorus, as P, (mg/L)	0.06	0.82
Sediment, P8-1	Anoxic	Ammonia, as N, (mg/L)	9.67	55.29
Sediment, P9-1	Anoxic	Ammonia, as N, (mg/L)	9.67	136.65
Average	Anoxic	Ammonia, as N, (mg/L)	9.67	95.97
Sediment, P8-1	Anoxic	Iron (mg/L)	0.39	2.22
Sediment, P9-1	Anoxic	Iron (mg/L)	0.29	4.08
Average	Anoxic	Iron (mg/L)	0.34	3.15
Sediment, P8-A	Aerobic	Total Phosphorus, as P, (mg/L)	1.02	5.81
Sediment, P9-A	Aerobic	Total Phosphorus, as P, (mg/L)	0.00	0.00
Average	Aerobic	Total Phosphorus, as P, (mg/L)	0.51	2.91
Sediment, P8-A	Aerobic	Ammonia, as N, (mg/L)	9.83	56.24
Sediment, P9-A	Aerobic	Ammonia, as N, (mg/L)	1.50	21.20
Average	Aerobic	Ammonia, as N, (mg/L)	5.67	38.72
Sediment, P8-A	Aerobic	Iron (mg/L)	0.52	2.98
Sediment, P9-A	Aerobic	Iron (mg/L)	0.14	1.96
Average	Aerobic	Iron (mg/L)	0.33	2.47
Overall Average	Anoxic and Aerobic	Total Phosphorus, as P, (mg/L)	0.28	1.87
Overall Average	Anoxic and Aerobic	Ammonia, as N, (mg/L)	7.67	67.34
Overall Average	Anoxic and Aerobic	Iron (mg/L)	0.33	2.81

 Table 3 – Summary of Anoxic and Aerobic Flux Rates and Internal Loads (NRR Equation)

Sediment flux analysis showed similar total phosphorus, ammonia, and iron concentration values between North Lake (Pond 8) and South Lake (Pond 9). Flux rates and loads calculated using the Slope equation were on average lower and more conservative as compared to the values calculated by the NRR equation. However, both sets of equations suggest that each lake has the potential to act as a source of nitrogen while acting as a sink for phosphorus. Therefore, it is recommended that measures are taken to conduct targeted dredging and/or treatment of the sediment via chemical inactivation to reduce internal nutrient cycling and loads to each lake.

APPENDIX 1 – FLUX SAMPLING LOCATIONS

Created by: MR Checked by: FL

0	200	400
	200	400

800 Feet APPENDIX 2 – FLUX SAMPLING STANDARD OPERATING PROCEDURE

STANDARD OPERATING PROCEDURE EVALUATION OF TREATMENT ALTERNATIVE EFFICIENCIES THROUGH DIRECT MEASUREMENT OF DIFFUSIVE FLUX

Effective Date: June 11, 2018

Prepared by: Water Resources Technical Lead Scientist; Laboratory Scientist

Approved by: <u>Quality Assurance Field Officer; Quality Assurance Laboratory Director</u>

TABLE OF CONTENTS

1.0 Purpose	1
2.0 Scope, Application and Applicable Matrix	
3.0 Materials and Methods	3
3.1 Field Sample Collection Procedures, Preservation and Storage	3
3.2 Sample Type C: Internal Laboratory Sample Preparation Procedure, Preservation	
and Storage for Intact Sediment Core Incubation Flux Measurement	5
4.0 Data Analyses	8
4.1 Calculation of Nutrient Flux Rates	8
5.0 Quality Control	8
6.0 Safety and Waste Management	
7.0 References	

1.0 Purpose

This SOP describes field and laboratory methods recommended to evaluate the potential internal nutrient loading from sediments that may occur in a waterbody, as part of the sediment nutrient flux assessment component of the subject Project. In addition, various treatment alternatives can also be evaluated by measuring the reduction of diffusive nutrient flux, which would directly relate to the alternative's treatment efficiency.

The flux study will aid in quantifying the potential beneficial impacts of adding a biological or chemical amendment or cap to improve water quality.

2.0 **Scope, Application and Applicable Matrix**

Sediment nutrient accumulations in waterbodies over time can contribute pollutant sources to the overlying water column, through biogeochemical processes such as adsorption, desorption and diffusion processes (Lijklema et al. 1993). Detailed physical and chemical characterizations of sediments are therefore essential to evaluate the nutrient exchange processes that occur at the sediment-water interface (Sahin et al. 2012).

Phosphorus is typically the limiting nutrient in lentic systems, and when found in excess, eutrophication can occur (Dorich et al. 1985). As a growing number of waterbodies worldwide suffer from cultural eutrophication, determination of the causes of water quality degradation is becoming increasingly important for water resource management and restoration (Ogdahl et al. 2014). Bottom sediments in waterbodies play a major role in releasing nutrients to the overlying water column during wind induced sediment resuspension and/or by constant flux due to diffusion (Reddy et al. 1996). Projects that include treatment alternatives to cap sediments containing high concentrations of biologically available

nutrients are beneficial to the recovery of water quality and ecological conditions in waterbodies such as lakes and streams.

Nutrient bioavailability and reactivity in the sediments can be quantified by measuring different forms of nitrogen (N) and phosphorus (P) content in the sediment (Olila et al. 1995) and release from the sediments into the water column (Ogdahl et al. 2014). The amounts and forms of reactive and nonreactive P in sediments can be examined using chemical extraction procedures to differentiate between the P fraction's solubility when exposed to various chemical extractants (Psenner et al. 1988; Olila et al. 1995). Readily available P (i.e. labile P) is defined as the sum of water-soluble P and NH₄Cl or KCl extractable P. These labile P fractions are desorbed and hydrolyzed or loosely bound or adsorbed (Hieltjes and Lijklema 1980; Topcu and Pulatsu 2008). The NaOH-extractable P fraction is the reductant soluble P form that can be released under certain environmental conditions and is extracted from iron hydroxide and aluminum hydroxide surfaces in the laboratory (Hieltjes and Lijklema 1980; Topcu and Pulatsu 2008). The sum of labile P and reductant soluble P forms typically account for the total biologically available P (BAP), which can be used as fuel to promote growth by phytoplankton in the water column (Reddy et al. 1998). Nutrient loading rates that diffuse from the sediments are dependent on the geologic nature (i.e. high natural phosphorus content) and/or legacy point source inputs into the system.

Flux rates of biologically available nutrients from the sediments can be quantified in the laboratory by incubating intact sediment cores under controlled laboratory conditions and measuring changes in nutrient concentrations over time in the water column overlying the sediment cores (e.g., Schelske et al. 1991, Trefry et al. 1992, Moore et al. 1998, and Ogdahl et al. 2014,). The primary benefit of the laboratory incubation approach is that the experimental conditions and the range of factors affecting flux rates can be carefully controlled. A slight drawback is the possibility that laboratory studies cannot completely mimic *in-situ* waterbody conditions and are subject to laboratory artifacts if sufficient controls are not put in place.

Intact sediment core incubations to determine flux rates rely on careful sediment extraction in the field and minimum disturbance during laboratory incubations. At the lab, nutrient concentration changes in the overlying water are evaluated overtime. Flux rates could be highly variable, dependending on the conditions that were encountered before and during inclubation. Some important considerations include the following:

- 1) Depth of sediment profiles collected and analyzed in the core
- 2) Depth of water analyzed on top of the sediment in the core
- 3) Initiation of incubation after inclusion of source water
- 4) The number and distribution (on time scale) of data points to develop the flux rate
- 5) The beginning and end points, and the length of incubation and time spanning between data points and from beginning to end of the run
- 6) Whether the tests are conducted in aerobic, anoxic, quiescent and/or turbulent conditions.

Depending on the study objective, it is possible to conduct the flux tests in both aerobic and anoxic conditions in separate core profiles (with replicates) to limit error introduced from biogeochemical processes not regularly encountered in the waterbody. Therefore, maintenance of low oxygen concentrations at anoxic levels by gentle purging with N_2 gas mixture is necessary to maintain the appropriate anoxic conditions. In contrast, gentle purging of air gas mixture is needed to mainain aerobic conditions. In addition, an appropriate stirring rate may be desired to establish a representative diffusive boundary layer thickness similar to the level of turbulance of the subject waterbody.

The intact sediment core laboratory incubation approach was selected to take advantage of strictly controlled laboratory conditions that can be manipulated to answer specific resource management questions.

Details of the experimental design and methodology are provided below, which are applicable to sediment samples collected by Wood field technicians, processed and/or analyzed by the Wood Laboratory and/or other certified laboratories. Trained field technicians and laboratory technical staff with applicable training and experience are responsible for performance of this SOP.

3.0 Materials and Methods

3.1 Field Sample Collection Procedures, Preservation and Storage

Three different types of samples and analyses should be conducted at each sampling site. The three types are identified by letters **a** through **c** below and should be collected in the following order for quality control purposes:

- a) Water Chemistry *In-situ* Vertical Profile
- b) Sediment Depth (In-situ)
- c) Intact Sediment Cores

Intact sediment cores should be transported to the Wood Flux Laboratory for set-up and immediately after core extrusion. Sampling methods and laboratory procedures for each of the different sampling types are described in the following sub-sections.

3.1.1 Field Equipment and Supplies

- 1) Safety plan
- 2) Boat with motor
- 3) GPS
- 4) Camera
- 5) Maps with access, site locations, and contact information
- 6) FDEP SOPs for water sampling
- 7) Field sheets
- 8) Fine point sharpies
- 9) Labels
- 10) Putty knife and screwdriver
- 11) Metric ruler
- 12) YSI MDS 550 multiparameter water quality sonde (calibrated and checked (ICV, CCV) documented on calibration logs per FDEP SOP)
- 13) Turbidimeter (calibrated and checked (ICV, CCV) documented on calibration logs per FDEP SOP)
- 14) Secchi disk
- 15) Levelling rod for muck depth and hard bottom depth
- 16) Peristaltic pump or submersible pump for collection of near-bottom ambient water for carboys/jugs for use in incubations
- 17) 12 X 3" outer diameter (OD) clean clear polycarbonate core tube, with 2 ⁷/₈" inner diameter (ID) and a ¹/₁₆" wall thickness, cut into 2' long pieces
- 18) Piston corer assembly for intact flux cores
- 19) Minimum of 16 3" test plugs to serve as bottom and top core plugs
- 20) Duct tape, epoxy glue, or other material to prevent leakage from cores
- 21) Extra-large black garbage bags to cover and keep core samples in the dark
- 22) Coolers with upright frame for flux core storage and transport

3.1.2 Field Equipment Calibration

Staff generated documentation of initial calibration, initial calibration verification and continuing calibration verification of water quality multiparameter sondes used to collect *in-situ* water chemistry profiles, and other field data collection equipment, as applicable. The FDEP SOPs (FS1000, FT1000, FD1000, FT1100, FT1200, FT1300, FT1400, FT1500, and FT1600), should be used for pre and post-

event instrument calibration and/or verification conducted prior to commencing sampling and at the end of each sampling day.

3.1.3 Field Sample Collection and QA/QC Procedures

Several SOPs such as the FDEP SOPs for water and sediment sampling (FS1000, FS2000, FS2100, and FS4000) should be kept on-hand during mobilization or pre-event preparation, and sampling. These SOPs should be followed to maintain a high level of accuracy in data collection and to ensure sound QA/QC management practices should be being followed.

3.1.3.1 Sample Type A: *In-situ* Vertical Profile of Water Chemistry

- 1) At each site, photographs should be taken showing the water column and habitat conditions of the site. In addition, photos should be taken of each of the sediment cores collected. The photographs taken should be noted on the field sheets.
- 2) Any notable field conditions should be noted such as weather or other environmental conditions that may affect sampling results.
- 3) At each site, *in-situ* water chemistry vertical depth profiles should be collected with a properly calibrated YSI multiparameter sonde.
- 4) The length of the YSI cord should be long enough to reach the bottom of the water column
- 5) At each site, YSI measurements should be recorded at three depths in the water column at the top, middle, and as near to the bottom as possible without disturbing the sediments (within 0.5 m of benthic surface).
- 6) Care must be taken to not disturb the sediments to cause error in the measurements.
- 7) The following parameters should be recorded for the overall site: total water depth, Secchi depth and measurement depth.
- 8) The following parameters should be recorded at each incremental depth: water temperature, dissolved oxygen (DO), pH, specific conductivity, salinity, ORP, and turbidity.

3.1.3.2 Sample Type B: Sediment Depth Collection

- 1) At each site, the top and bottom depth of flocculent sediment layer (muck), and the depth to hard bottom (refusal) should be measured with a levelling rod.
- 2) Sediment muck depths should be recorded on corresponding field sheets.

3.1.3.3 Sample Type C: Sediment Intact Cores Collection

- 1) At three predetermined sites, intact undisturbed sediment cores should be collected with a coring assembly (3' clear polycarbonate tube coupled with drive rods) to a depth of 20 cm from the top of sediment (0-20 cm).
 - a. At all three predetermined sites 2 cores will be collected at each location (one for anoxic and one for aerobic incubation).
 - b. Two water controls (one aerobic, and one anoxic) will be incubated along with the intact cores.
- 2) All core tubes must be labeled properly with site name, date, time, sampler names, and replicate number (1-8) on a piece of removable tape.
- 3) Care should be taken to ensure that homogenous replicate samples are collected from each site, which will require inspection of the replicates prior to placing the samples into the upright core racks (for storage and transportation). If the stratigraphy of the core samples differ, then a different, more homogeneous sediment strata should be located.
- 4) 25 to 40 cm of near-bottom ambient water should be included on top of the sediment core
- 5) After sediment is captured by the coring device, the core will be brought to the water's surface, sealed with a rubber stopper prior to breaking the water surface. Core retrieval approach may vary depending on the type of substrate. Slippage of sediments out of the bottom of the core must be stopped to avoid sample loss out of the bottom of the core and to avoid disturbing the sediments within the core.

- 6) The intact cores should be sealed with the appropriate top and bottom rubber stoppers.
- 7) The intact cores rubber stoppers will be wrapped with duct tape or an epoxy will be applied to the stopper to prevent leakage (epoxy is primarily needed for sandy samples with low organic matter content to prevent sample falling out the bottom of the core).
- 8) All cores must be,
 - a. covered with a dark garbage bag to limit light affecting the cores, and
 - b. transported in an upright position (using a rack) to the Wood Flux Lab for incubation and nutrient flux experiments
- 9) All COC paperwork must be filled out completely, and provided to the Wood lab
- 10) A copy of the COC signed by the laboratory must be received prior to departure

3.2 Sample Type C: Internal Laboratory Sample Preparation Procedure, Preservation and Storage for Intact Sediment Core Incubation Flux Measurement

3.2.1 Laboratory Equipment and Supplies

For set-up

- 1) Teflon tubing
- 2) Acid washed carboys
- 3) Deionized water (DI)
- 4) Labeling tape
- 5) 0.45 micron filtered ambient water

For nutrient flux experiment

- 1) Thermostat
- 2) Verification thermometer (ambient temperature)
- 3) pH meter
- 4) Oxygen meter with incorporated thermometer
- 5) Turbidity meter
- 6) Sterile polyethylene syringes
- 7) 0.45 µm membrane filters
- 8) Clean sample collection bottles (provided by analytical lab)
- 9) Diffuser
- 10) Teflon tubing
- 11) Labeling tape

3.2.2 Reagents and Standards

1) Nitrogen Gas

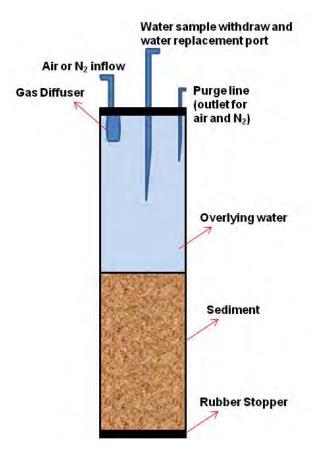


Figure 1. Intact Core Incubation Apparatus

3.2.3 Laboratory Procedure: Intact Sediment Core Preparation and Incubation

Near Bottom Ambient Water Preparation:

- Prior to initialization of core incubation, the ambient water should be filtered using an in-line 0.45micron capsule filter with a peristaltic pump. Once filtered, half of the containers should be bubbled with N₂ gas at a rapid rate to achieve and maintain anoxic conditions prior and during flux sampling. The other half will be stored until needed for water replacements on the intact cores. At that time, water containers will be bubbled with N₂ gas at room temperature until anoxic conditions are achieved and then used to refill intact cores.
- 2) The setup of the intact core apparatus is shown in **Figure 1**, and it includes fittings and tubing required for subsampling.

Adjustment of Sediment on Cores:

- If cores are received with sediment depths that are not the desired amount (20 cm), then cores may be adjusted to the desired depth of sediment and overlying water column (~30 cm) prior to incubation.
- 4) To adjust sediment volumes on the cores, first remove overlaying water by siphoning with a Teflon tube, making sure not to disturb or remove the top layer of sediment, then remove the bottom stopper and carefully let the sediment out of the bottom of the core tube. Make sure to seal the bottom of the core well to prevent water leakage during flux study. Refill with filtered ambient water as described in step 5 below.

Replacing Overlying Water with Filtered Ambient Water:

5) If the sediments on the core do not require adjustment, remove the overlaying water and replace with ~30 cm of filtered near bottom ambient water from the carboy. The water should reach to the

top of the core. The water must be added slowly to prevent disturbance of sediments. After the water is replaced on the core, it is time to begin the stabilization/equilibration period.

Sediment Core Equilibration:

- 6) The time necessary for sedimentation/equilibration to be achieved is dependent on the composition of the sediment in upper portion of the core. Flocculent sediment material will require a longer duration for complete settling (up to 24 hours), whereby, sandy sediment may be equilibrated within the 12 hour timeframe). Systematic monitoring of turbidity can inform the length of time needed to achieve full equilibration and sedimentation in the core. It is recommended to allow enough time for the equilibration period to achieve ca. 85-90% reduction of measured turbidity values (via settling) prior to commencing flux sampling.
- 7) Nutrient release dynamics can be variable at the start of the intact sediment cores incubation, and are influenced by the cores equilibration time (Ogdahl et al. 2014). Therefore, the cores should be allowed to stabilize/equilibrate for a minimum of 24 hours, to allow for complete sedimentation processes to occur (Ogdahl et al. 2014) prior to commencement of the flux measurements.

Sediment Core Incubation and Sampling:

- 8) Cores from each site should be incubated in the dark using a temperature range between 23 to 27°C (with a target incubation temperature of 25°C), which should be consistent with ambient water conditions at the collection site with a tolerance range of ±4°C during median temperature ranges.
- 9) The cores should be exposed and incubated under anoxic and aerobic conditions with replicates.
- 10) For the anoxic redox treatment, it is imperative to prevent oxygen exposure to the water column at all times while preparing for and during flux incubation and sampling. The water column should be bubbled with N₂ gas at a consistent rate that does not disturb and resuspend the upper layer of sediment in the core. However, the bubbling rate must be rapid enough to achieve and maintain anoxic conditions in the water column and sediment prior to commencing flux sampling.
- 11) Dissolved oxygen (DO) should be systematically monitored (e.g. every 6-8 hours) to ensure that the appropriate redox treatment is being achieved and maintained at the beginning and throughout the incubation. A DO concentration of less than 1 mg/L is required to maintain anoxic conditions.
- 12) The cores should be incubated for a period of no less than 5 days (120 hours), and up to 10 days (240 hours) with at least three discrete sampling time intervals between time= 0 hr, and time= 240 (if 10 days is selected as the length of incubation). Typically, sampling intervals should occur at T= at 48 hr, 168 hr, and 240 hours. However, depending on the day that the samples are collected, and the analytical lab's operating schedule, these intervals may be adjusted as needed. On many occasions, at four to five sampling intervals will be collected for better data resolution and to fit the curve.
- 13) A water sample should be periodically removed for sample analysis with a polyethylene syringe fitted with a length of 1-mm polyethylene tubing positioned to withdraw samples at mid-lower water column from each core as part of the sampling interval collections. Critical parameters for flux sampling include iron, total phosphorus and ammonia (NH₃) to meet project objectives, which should only require 50 ml per parameter, for a total of 150 ml of water removed from each core for a sample. However, additional parameters could also be sampled. The number of parameters sampled is based on the study design and goals, but it must be understood that with each parameter sampled, additional water volume must be replaced on the core, which can potentially introduce dilution error into later sampling interval samples. It is recommended to sample as few parameters as possible to avoid introducing dilution error into the results.
- a. For the NH3 sample, sulfuric acid must be added to properly preserve the sample.
- 14) The depth of water on top of the core should be maintained throughout the incubation at ~30 cm. The volume of water (150 ml) that is removed if all three parameters are collected during each subsampling interval shall be replaced with an equal volume of ambient water (under the appropriate redox condition). Based on a 7.3 cm diameter core, and a depth of 30 cm, the volume of water on top of each sediment core will be maintained at approximately 1260 ml. The ~150 ml

that would be removed if all three parameters are collected during each subsampling event represents less than 5% of the total volume of water on top of the sediment in the core, which should not have an effect on dilution of the remaining volume. The replacement amount shall not exceed more than 5% during each sampling interval to minimize the effect of replacement water on the remaining core water nutrient concentrations.

15) Discrete interval subsamples will be placed into sample containers and transported to the analytical laboratory in coolers on ice for analysis.

4.0 Data Analyses

4.1 Calculation of Nutrient Flux Rates

Nutrient flux rates should be estimated using the nutrient release rate equation, which was calculated based on the change of nutrient concentration over time (see equation below) and also by calculating the slope by using the interval sampling data and time step. Annual internal load of nutrients should be estimated following the methods described by Ogdahl et al. (2014) by using the nutrient release rate calculation and by calculating the rate with the slope.

Nutrient Release Rate Calculation - The flux rates for nitrogen and phosphorus species can be calculated using the following equation:

Eq. 1 Nrr = $[(Ct - Ci) \times V / A] / delta t$

Where:

Nrr = the gross nutrient release (positive values) or retention (negative values) rate per unit surface area of sediment (mg $/m^2/d$),

Ct = the final nutrient concentration at time t, or near the end of the incubation,

Ci = the initial nutrient concentration at time i, near the beginning of the incubation,

V = the volume of water in the water column,

A = the surface area of the sediment core, and

delta t = change in time, from time t-i.

5.0 Quality Control

 All equipment was calibrated before use in the field and laboratory per FDEP SOPs noted in previous sections. Continuing verification of calibration was performed at the end of the day. SOPs should be used as a reference during field and laboratory activities to maintain quality control.

6.0 Safety and Waste Management

- 1) Laboratory staff must use proper safety equipment (e.g., eye protection, gloves, close-toe shoes)
- 2) Staff will perform necessary leak checks on gas cylinders.
- 3) Gas cylinders will be secured at all times and capped when not in use.
- 4) Sediments in core will be disposed as a solid waste.

7.0 References

- Dorich, R. A., D. W. Nelson, and L. E. Sommers. 1985. Estimating Algal Available Phosphorus in Suspended Sediments by Chemical Extraction. J. Environ. Qual. 14: 400-405.
- Hieltjes, A. H. M. and L. Lijklema. 1980. Fractionation of Inorganic Phosphates in Calcareous Sediments. J. Environ. Qual. 9:405-407.
- Lijklema, L., A. A. Koelmans and R. Portielje. 1993. Water Quality Impacts of Sediment Pollution and the Role of Early Diagenisis. Wat. Sci. Tech. 28:1-12.
- Montgomery, J. R., C. Zimmerman, and M. Price. 1979. The collection, analysis, and variation of

nutrients in estuarine porewater. Estuarine and Coastal Marine Science. 9: 203-214.

- Moore, P. A. Jr. K. R. Reddy, and M. M. Fisher. 1998. Phosphorus Flux between Sediment and Overlying Water in Lake Okeechobee, Florida: Spatial and Temporal Variations. J. Environ. Qual. 27:1428-1439
- Ogdahl, M.E., Steinman, A.D., and M.E. Weinert. 2014. Laboratory-determined Phosphorus Flux from Lake Sediments as a Measure of Internal Phosphorus Loading. J. Vis. Exp. 85, e51617, doi:10.3791/51617.
- Olila, O. G., K. R. Reddy, W. G. Harris, Jr. 1995. Forms and Distribution of Inorganic Phosphorus in Sediments of Two Shallow Eutrophic Lakes in Florida. Hydrobiologia. 302: 147-161.
- Paulic, M., Steward, J., Busby. T., and M. Policastro. 2012. Indian River Lagoon Basin Management Action Plans (BMAPs): Muck Removal Project Credit Guidance. FDEP, Water Quality Restoration Program.
- Psenner, R., Boström, B., Dinka, M., Petterson, K., Pucsko, R., Sager, M., 1988. Fractionation of phosphorus in suspended matter and sediment. Archive für Hydrobiologie: Ergebnisse der Limnologie 30, 98e103.
- Reddy, K. R., M. M. Fisher, and D. Ivanhoff. 1996. Resuspension and Diffusive Flux of Nitrogen and Phosphorus in a Hypereutrophic Lake. J. Environ Qual. 25: 363-371
- Reddy et al. 1998. Forms of soil phosphorus in selected hydrologic units of the Florida Everglades. Soil Sci. Soc. Am. J. 62:1134-1147.
- Reddy, K. R., M. Fisher, H. Pant, P. Inglett, and J. White. 2001. Indian River Lagoon Hydrodynamics and Water Quality Model: Nutrient Storage and Transformations in Sediments. Final Report to St. Johns River Water Management District, Palatka, FL.
- Sahin, Y., A. Demirak, and F. Keskin. 2012. Phosphorus Fractions and its Potential Release in the Sediments of Koycegiz Lake, Turkey. Lakes, Reservoirs and Ponds. 6: 139-153

Schelske, C.L., M. Brenner, and T.J. Whitmore. 1991. Lake Seminole Sediment

Characterization and Analysis. Final report prepared for the Southwest Florida Water Management District. University of Florida Department of Fisheries and Aquaculture. Gainesville, Fl.

Southwest Florida Water Management District. 1992. Lake Seminole Diagnostic Feasibility Study. Final report prepared for the Pinellas-Anclote River Basin Board. Brooksville, Fl. Topcu, A., and S. Pulatsu. 2008. Phosphorus Fractions in Sediment Profiles of the Eutrophic Lake Mogan, Turkey. Fresenius Environmental Bulletin 17: 164-172.

Trefry, J. H., H. Feng, R. Trocine, S. Metz, G. Grguric, R. Vereecke, and S. Cleveland. 1992.Concentrations and Benthic Fluxes of Nutrients from Sediments in the Indian River Lagoon, Florida (Project MUCK, Phase II). Final Report to the St. Johns River Water Management District, Palatka, FL.

APPENDIX 3 – LABORATORY REPORTS

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2218971)

October 04, 2022

Francesca Lauterman Wood EIS 1101 Channelside Suite 200 Tampa, FL 33602

RE: Workorder: T2218971 City of Naples

Dear Francesca Lauterman:

Enclosed are the analytical results for sample(s) received by the laboratory on Monday September 19, 2022. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Suckey

Sue Bell, Sr Project Manager SBell@aellab.com

FINAL

Workorder: City of Naples (T2218971)

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported	Basis
T2218971001	DI-T=0	WA	EPA 200.7	09/14/2022 16:00	09/19/2022 14:00	1	NA
T2218971001	DI-T=0	WA	EPA 350.1	09/14/2022 16:00	09/19/2022 14:00	1	NA
T2218971001	DI-T=0	WA	EPA 365.3	09/14/2022 16:00	09/19/2022 14:00	1	NA
T2218971002	DI-Dup-T=0	WA	EPA 200.7	09/14/2022 16:05	09/19/2022 14:00	1	NA
T2218971002	DI-Dup-T=0	WA	EPA 350.1	09/14/2022 16:05	09/19/2022 14:00	1	NA
T2218971002	DI-Dup-T=0	WA	EPA 365.3	09/14/2022 16:05	09/19/2022 14:00	1	NA
T2218971003	P8-Ambient-T=0	WA	EPA 200.7	09/14/2022 16:30	09/19/2022 14:00	1	NA
T2218971003	P8-Ambient-T=0	WA	EPA 350.1	09/14/2022 16:30	09/19/2022 14:00	1	NA
T2218971003	P8-Ambient-T=0	WA	EPA 365.3	09/14/2022 16:30	09/19/2022 14:00	1	NA
T2218971004	P8-Ambient Dup-T=0	WA	EPA 200.7	09/14/2022 16:35	09/19/2022 14:00	1	NA
T2218971004	P8-Ambient Dup-T=0	WA	EPA 350.1	09/14/2022 16:35	09/19/2022 14:00	1	NA
T2218971004	P8-Ambient Dup-T=0	WA	EPA 365.3	09/14/2022 16:35	09/19/2022 14:00	1	NA
T2218971005	P9-Ambient-T=0	WA	EPA 200.7	09/14/2022 16:40	09/19/2022 14:00	1	NA
T2218971005	P9-Ambient-T=0	WA	EPA 350.1	09/14/2022 16:40	09/19/2022 14:00	1	NA
T2218971005	P9-Ambient-T=0	WA	EPA 365.3	09/14/2022 16:40	09/19/2022 14:00	1	NA
T2218971006	P9-Ambient Dup-T=0	WA	EPA 200.7	09/14/2022 16:45	09/19/2022 14:00	1	NA
T2218971006	P9-Ambient Dup-T=0	WA	EPA 350.1	09/14/2022 16:45	09/19/2022 14:00	1	NA
T2218971006	P9-Ambient Dup-T=0	WA	EPA 365.3	09/14/2022 16:45	09/19/2022 14:00	1	NA
T2218971007	P8-1-T=24	WA	EPA 200.7	09/13/2022 15:00	09/19/2022 14:00	1	NA
T2218971007	P8-1-T=24	WA	EPA 350.1	09/13/2022 15:00	09/19/2022 14:00	1	NA
T2218971007	P8-1-T=24	WA	EPA 365.3	09/13/2022 15:00	09/19/2022 14:00	1	NA
T2218971008	P9-1-T=24	WA	EPA 200.7	09/13/2022 15:05	09/19/2022 14:00	1	NA
T2218971008	P9-1-T=24	WA	EPA 350.1	09/13/2022 15:05	09/19/2022 14:00	1	NA
T2218971008	P9-1-T=24	WA	EPA 365.3	09/13/2022 15:05	09/19/2022 14:00	1	NA
T2218971009	WC-1-T=24	WA	EPA 200.7	09/13/2022 15:10	09/19/2022 14:00	1	NA
T2218971009	WC-1-T=24	WA	EPA 350.1	09/13/2022 15:10	09/19/2022 14:00	1	NA
T2218971009	WC-1-T=24	WA	EPA 365.3	09/13/2022 15:10	09/19/2022 14:00	1	NA
T2218971010	P8-A-T=24	WA	EPA 200.7	09/13/2022 15:20	09/19/2022 14:00	1	NA
T2218971010	P8-A-T=24	WA	EPA 350.1	09/13/2022 15:20	09/19/2022 14:00	1	NA
T2218971010	P8-A-T=24	WA	EPA 365.3	09/13/2022 15:20	09/19/2022 14:00	1	NA
T2218971011	P9-A-T=24	WA	EPA 200.7	09/13/2022 15:25	09/19/2022 14:00	1	NA
T2218971011	P9-A-T=24	WA	EPA 350.1	09/13/2022 15:25	09/19/2022 14:00	1	NA
T2218971011	P9-A-T=24	WA	EPA 365.3	09/13/2022 15:25	09/19/2022 14:00	1	NA
T2218971012	WC-A-T=24	WA	EPA 200.7	09/13/2022 15:30	09/19/2022 14:00	1	NA
T2218971012	WC-A-T=24	WA	EPA 350.1	09/13/2022 15:30	09/19/2022 14:00	1	NA

Tuesday, October 4, 2022 3:35:54 PM Dates and times are displayed using (-04:00) Page 2 of 35 Certificate of Analysis

POWERED BY HORIZON^{*} v.13.0.0

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2218971)

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported	Basis
T2218971012	WC-A-T=24	WA	EPA 365.3	09/13/2022 15:30	09/19/2022 14:00	1	NA
T2218971013	P8-1-T=48	WA	EPA 200.7	09/13/2022 14:00	09/19/2022 14:00	1	NA
T2218971013	P8-1-T=48	WA	EPA 350.1	09/13/2022 14:00	09/19/2022 14:00	1	NA
T2218971013	P8-1-T=48	WA	EPA 365.3	09/13/2022 14:00	09/19/2022 14:00	1	NA
T2218971014	P9-1-T=48	WA	EPA 200.7	09/14/2022 14:05	09/19/2022 14:00	1	NA
T2218971014	P9-1-T=48	WA	EPA 350.1	09/14/2022 14:05	09/19/2022 14:00	1	NA
T2218971014	P9-1-T=48	WA	EPA 365.3	09/14/2022 14:05	09/19/2022 14:00	1	NA
T2218971015	WC-1-T=48	WA	EPA 200.7	09/14/2022 14:10	09/19/2022 14:00	1	NA
T2218971015	WC-1-T=48	WA	EPA 350.1	09/14/2022 14:10	09/19/2022 14:00	1	NA
T2218971015	WC-1-T=48	WA	EPA 365.3	09/14/2022 14:10	09/19/2022 14:00	1	NA
T2218971016	P8-A-T=48	WA	EPA 200.7	09/14/2022 14:15	09/19/2022 14:00	1	NA
T2218971016	P8-A-T=48	WA	EPA 350.1	09/14/2022 14:15	09/19/2022 14:00	1	NA
T2218971016	P8-A-T=48	WA	EPA 365.3	09/14/2022 14:15	09/19/2022 14:00	1	NA
T2218971017	P9-A-T=48	WA	EPA 200.7	09/14/2022 14:20	09/19/2022 14:00	1	NA
T2218971017	P9-A-T=48	WA	EPA 350.1	09/14/2022 14:20	09/19/2022 14:00	1	NA
T2218971017	P9-A-T=48	WA	EPA 365.3	09/14/2022 14:20	09/19/2022 14:00	1	NA
T2218971018	WC-A-T=48	WA	EPA 200.7	09/14/2022 14:25	09/19/2022 14:00	1	NA
T2218971018	WC-A-T=48	WA	EPA 350.1	09/14/2022 14:25	09/19/2022 14:00	1	NA
T2218971018	WC-A-T=48	WA	EPA 365.3	09/14/2022 14:25	09/19/2022 14:00	1	NA

FINAL

Workorder: City of Naples (T2218971)

Workorder Summary

Batch Comments

ICPt/3081 - ICP 200.7 Analysis

The matrix spike (MS) recoveries of Potassium for G2208084001 were outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and Matrix Spike Duplicate (MSD) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential high bias in this matrix. No further corrective action is required.

FINAL

Workorder: City of Naples (T2218971)

Analytical Results Qualifiers

Parameter Qualifiers

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

Lab Qualifiers

GDOH Certification #E82001 (FL NELAC) AEL-GainesvilleTDOH Certification #E84589 (FL NELAC) AEL-Tampa

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971001 Sample ID: DI-T=0		Date Collected:09/14/2022 16:00Date Received:09/19/2022 14:00					Matrix: Water			
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab		
METALS (EPA 200.7)										
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 16:07	Т		
WET CHEMISTRY (EPA 350.1)										
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/20/2022 10:10	09/20/2022 10:10	Т		
WET CHEMISTRY (EPA 365.3)										
Total Phosphorus (as P)	0.049	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G		

v.13.0.0

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971002 Sample ID: DI-Dup-T=0		Date Colle Date Rece		14/2022 10 19/2022 14		Matrix: Water		
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 16:09	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/20/2022 10:13	09/20/2022 10:13	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.006 I	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

POWERED BY HORIZON v.13.0.0

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971003 Sample ID: P8-Ambient-T=0		Date Colle Date Rece		14/2022 1 19/2022 1		Matrix: Water		
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.019 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 16:12	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.1	mg/L	0.03	0.02	1	09/20/2022 10:14	09/20/2022 10:14	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.081	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: Sample ID:	T2218971004 P8-Ambient Dup-T=0		Date Collected:09/14/2022 16:35Date Received:09/19/2022 14:00				Matrix: Water			
Parameter		Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab	
METALS (EP	A 200.7)									
Iron		0.019 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 16:15	Т	
WET CHEMIS	STRY (EPA 350.1)									
Ammonia (N)		0.09	mg/L	0.03	0.02	1	09/20/2022 10:15	09/20/2022 10:15	т	
WET CHEMISTRY (EPA 365.3)										
Total Phospho	orus (as P)	0.175	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G	

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971005 Sample ID: P9-Ambient-T=0		Date Colle Date Rece		14/2022 1 19/2022 1		Matrix: Water		
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.042 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 16:18	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/20/2022 10:16	09/20/2022 10:16	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.057	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

SIBORATOR!

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: Sample ID:	T2218971006 P9-Ambient Dup-T=0		Date Collec Date Recei		14/2022 10 19/2022 14		Matrix: Water			
Parameter		Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab	
METALS (EPA	A 200.7)									
Iron		0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 16:27	Т	
WET CHEMIS	TRY (EPA 350.1)									
Ammonia (N)		0.02 U	mg/L	0.03	0.02	1	09/20/2022 10:17	09/20/2022 10:17	Т	
WET CHEMISTRY (EPA 365.3)										
Total Phospho	rus (as P)	0.070	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G	

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971007 Sample ID: P8-1-T=24		Date Colle Date Rece		13/2022 1 19/2022 1		Matrix: Water		
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.018 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 16:29	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.07	mg/L	0.03	0.02	1	09/20/2022 10:17	09/20/2022 10:17	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.081	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971008 Sample ID: P9-1-T=24		Date Collec Date Recei		13/2022 1 19/2022 1		Matrix: Water			
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab	
METALS (EPA 200.7)									
Iron	0.021 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 16:49	Т	
WET CHEMISTRY (EPA 350.1)									
Ammonia (N)	0.02 I	mg/L	0.03	0.02	1	09/20/2022 10:18	09/20/2022 10:18	Т	
WET CHEMISTRY (EPA 365.3)									
Total Phosphorus (as P)	0.035	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G	

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971009 Sample ID: WC-1-T=24		Date Colle Date Rece		13/2022 1 19/2022 1		Matrix: Water		
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 16:52	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/20/2022 10:19	09/20/2022 10:19	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.005 U	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971010 Sample ID: P8-A-T=24		Date Colle Date Rece		13/2022 1 19/2022 1		Matrix: Water		
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.022 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:01	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.07	mg/L	0.03	0.02	1	09/20/2022 10:20	09/20/2022 10:20	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.086	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971011 Sample ID: P9-A-T=24		Date Colle Date Rece		13/2022 1 19/2022 1		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:04	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/20/2022 10:28	09/20/2022 10:28	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.089	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971012 Sample ID: WC-A-T=24		Date Collected: 09/13/2022 15:30 Date Received: 09/19/2022 14:00				Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:07	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/20/2022 10:30	09/20/2022 10:30	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.014	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

RADIATOR!

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971013 Sample ID: P8-1-T=48	-	Date Collected: 09/13/2022 14:00 Date Received: 09/19/2022 14:00				Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.010 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:10	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.09	mg/L	0.03	0.02	1	09/20/2022 10:31	09/20/2022 10:31	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.145	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971014 Sample ID: P9-1-T=48		Date Collected: 09/14/2022 14:05 Date Received: 09/19/2022 14:00				Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0090 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:12	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.04	mg/L	0.03	0.02	1	09/20/2022 10:32	09/20/2022 10:32	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.148	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971015 Sample ID: WC-1-T=48		Date Collected: 09/14/2022 14:10 Date Received: 09/19/2022 14:00				Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:15	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/20/2022 10:33	09/20/2022 10:33	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.140	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:40	G

SARON KTOP

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971016 Sample ID: P8-A-T=48		Date Collected: 09/14/2022 14:15 Date Received: 09/19/2022 14:00				Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.014 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:18	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.2	mg/L	0.03	0.02	1	09/20/2022 10:34	09/20/2022 10:34	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.062	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:55	G

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971017 Sample ID: P9-A-T=48		Date Collected: 09/14/2022 14:20 Date Received: 09/19/2022 14:00				Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0077 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:21	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.04	mg/L	0.03	0.02	1	09/20/2022 10:35	09/20/2022 10:35	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.122	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:55	G

FINAL

Workorder: City of Naples (T2218971)

Analytical Results

Lab ID: T2218971018 Sample ID: WC-A-T=48		Date Colle Date Rece		14/2022 14 19/2022 14		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:24	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/20/2022 10:36	09/20/2022 10:36	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.092	mg/L	0.01	0.005	1	09/26/2022 11:10	09/26/2022 16:55	G

FINAL

Workorder: City of Naples (T2218971)

QC Results										
QC Batch: Preparation Method: Associated Lab IDs:	ICPt/3080 EPA 200.7 T22189710	01, T221897	71002, T2218	3971003, T2218		Method:	EPA 200.7 5, T2218971006,	T2218971	007	
Method Blank(4479974)										
Parameter				Results		Units	PQL	N	IDL	Lab
Iron				0.0067 U		mg/L	0.10	0	.0067	Т
Lab Control Sample (44	79975)									
Parameter			Units	Spiked Amo	ount Spi	ke Result	Spike Recover	y Cont	trol Limits	Lab
Iron			mg/L	1	.96		96	85 -	115	Т
Matrix Spike (4479976);	Matrix Spike	Duplicate	(4479977); P	arent Lab San	nple (G220	8199001)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	1.3	112	70 - 130	1.3	113	0	20	Т
Matrix Spike (4479978);	Matrix Spike	Duplicate	(4479979); F	Parent Lab San	nple (F220	4435002)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	1.7	107	70 - 130	1.7	107	0	20	Т

FINAL

Workorder: City of Naples (T2218971)

QC Results

QC Batch: Preparation Method: Associated Lab IDs:		08, T221897 16, T221897	,	,		s Method: [2218971012	EPA 200.7 2, T2218971013,	T2218971	014, T221897	1015,
Method Blank(4480034)		10, 1221001	1011, 12210							
Parameter				Results		Units	PQL	N	IDL	Lab
Iron				0.0067 U		mg/L	0.10	0	.0067	Т
Lab Control Sample (44	80035)									
Parameter			Units	Spiked Amo	ount Spi	ike Result	Spike Recover	y Cont	rol Limits	Lab
Iron			mg/L	1	.95		95	85 - 1	15	Т
Matrix Spike (4480036);	Matrix Spike	Duplicate (4480037); P	arent Lab San	nple (T221	9046001)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	1.6	112	70 - 130	1.7	116	2	20	Т
Matrix Spike (4480038);	Matrix Spike	Duplicate (4480039); P	arent Lab San	nple (G220	08084001)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	5.5	132	70 - 130	5.5	136	1	20	Т

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2218971)

QC Results

QC Batch: Preparation Method:	WCAg/8159 EPA 365.3)			Analy	sis Method	: EPA	365.3			
Associated Lab IDs:		,	,	971003, T2218 971011, T2218		,	,	,		,	1008,
Method Blank(4481357)											
Parameter				Results		Units		PQL	Γ	I DL	Lab
Total Phosphorus (as P)				0.005 U		mg/L		0.01	C	0.005	G
Lab Control Sample (44	81358)										
Parameter			Units	Spiked Amo	ount S	Spike Resul	t Spi	ike Recover	y Con	trol Limits	Lab
Total Phosphorus (as P)			mg/L	0.10		1	100)	80 -	120	G
Matrix Spike (4481360);	Matrix Spike	Duplicate	(4481361); Pa	arent Lab San	nple (F2	204541010)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Contr Limits			Dup Recovery	RPD	RPD Limit	Lab
Total Phosphorus (as P)	mg/L	0.25	.26	104	80 - 1	20 .28		111	6	20	G

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2218971)

QC Results

QC Batch: Preparation Method: Associated Lab IDs:	WCAg/8161 EPA 365.3 T22189710		1017, T2218	971018	Ana	lysis Me	thod:	EPA 365.3			
Method Blank(4481363)											
Parameter				Results		U	nits	PQL	Ν	I DL	Lab
Total Phosphorus (as P)				0.005 U		m	ıg/L	0.01	C	0.005	G
Lab Control Sample (44	81365)										
Parameter			Units	Spiked Amo	ount	Spike R	Result	Spike Recovery	/ Con	trol Limits	Lab
Total Phosphorus (as P)			mg/L	0.10		.1		100	80 -	120	G
Matrix Spike (4481366);	Matrix Spike	Duplicate ((4481367); P	arent Lab San	nple (T221897	1016)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Con Lim		Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Total Phosphorus (as P)	mg/L	0.25	.32	104	80 -	120	.34	109	4	20	G

FINAL

Workorder: City of Naples (T2218971)

QC Results

Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	l ah
Matrix Spike (4473573);	Matrix Spike	Duplicate (4	473574); P	arent Lab San	nple (T22189	71001)				
Associated Lab IDs:		01, T2218971 09, T2218971	,	,	8971004, T22	18971005	, T2218971006,	T22189710	07, T221897	1008,
Preparation Method:										
QC Batch:	WCAt/1475	4			Analysis M	ethod:	EPA 350.1			

Parameter	Units	Amount	Result	Recovery	Limits	Result	Recovery	RPD	Limit	Lab
Ammonia (N)	mg/L	1	1	101	90 - 110	1	100	1	10	Т

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2218971)

QC Results

QC Batch: Preparation Method: Associated Lab IDs:	-	Analysis Method: EPA 350.1 , T2218971002, T2218971003, T2218971004, T2218971005, T2218971006, T2218971007, T221897 , T2218971010, T2218971011, T2218971012, T2218971013, T2218971014, T2218971015, T221897 , T2218971018									
Method Blank(4473570)											
Parameter			Results	Units	PQL	MDL	Lab				
Ammonia (N)			0.02 U	mg/L	0.03	0.02	Т				
Lab Control Sample (44	73571)										
Parameter		Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Lab				
Ammonia (N)		mg/L	0.50	.5	109	90 - 110	Т				

STATIST STATIST

FINAL

Workorder: City of Naples (T2218971)

QC Results

QC Batch: Preparation Method:	WCAt/1475 EPA 350.1	4			Analysis	Method: E	PA 350.1			
Associated Lab IDs:		10, T2218971	,	,	,	,	T2218971007, T2218971015,		,	,
Matrix Spike (4473575);	Matrix Spike	e Duplicate (4	473576); P	arent Lab Sar	nple (T2218	971011)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Ammonia (N)	mg/L	1	1	105	90 - 110	1	101	4	10	Т

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

V

Workorder: City of Na			
QC Cross Refere	Sample ID	Prep Batch	Prep Method
ICPt/3080 - EPA 200.7			
T2218971001	DI-T=0	DGMt/4792	EPA 200.7
T2218971002	DI-Dup-T=0	DGMt/4792	EPA 200.7
T2218971003	P8-Ambient-T=0	DGMt/4792	EPA 200.7
T2218971004	P8-Ambient Dup-T=0	DGMt/4792	EPA 200.7
T2218971005	P9-Ambient-T=0	DGMt/4792	EPA 200.7
T2218971006	P9-Ambient Dup-T=0	DGMt/4792	EPA 200.7
T2218971007	P8-1-T=24	DGMt/4792	EPA 200.7
ICPt/3081 - EPA 200.7			
T2218971008	P9-1-T=24	DGMt/4793	EPA 200.7
T2218971009	WC-1-T=24	DGMt/4793	EPA 200.7
T2218971010	P8-A-T=24	DGMt/4793	EPA 200.7
T2218971011	P9-A-T=24	DGMt/4793	EPA 200.7
T2218971012	WC-A-T=24	DGMt/4793	EPA 200.7
T2218971013	P8-1-T=48	DGMt/4793	EPA 200.7
T2218971014	P9-1-T=48	DGMt/4793	EPA 200.7
T2218971015	WC-1-T=48	DGMt/4793	EPA 200.7
T2218971016	P8-A-T=48	DGMt/4793	EPA 200.7
T2218971017	P9-A-T=48	DGMt/4793	EPA 200.7
T2218971018	WC-A-T=48	DGMt/4793	EPA 200.7

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2218971)

QC Cross	Reference
-----------------	-----------

Lab ID	Sample ID	Prep Batch	Prep Method
WCAg/8159 - EPA 365.3			
T2218971001	DI-T=0	WCAg/8158	EPA 365.3
T2218971002	DI-Dup-T=0	WCAg/8158	EPA 365.3
T2218971003	P8-Ambient-T=0	WCAg/8158	EPA 365.3
T2218971004	P8-Ambient Dup-T=0	WCAg/8158	EPA 365.3
T2218971005	P9-Ambient-T=0	WCAg/8158	EPA 365.3
T2218971006	P9-Ambient Dup-T=0	WCAg/8158	EPA 365.3
T2218971007	P8-1-T=24	WCAg/8158	EPA 365.3
T2218971008	P9-1-T=24	WCAg/8158	EPA 365.3
T2218971009	WC-1-T=24	WCAg/8158	EPA 365.3
T2218971010	P8-A-T=24	WCAg/8158	EPA 365.3
T2218971011	P9-A-T=24	WCAg/8158	EPA 365.3
T2218971012	WC-A-T=24	WCAg/8158	EPA 365.3
T2218971013	P8-1-T=48	WCAg/8158	EPA 365.3
T2218971014	P9-1-T=48	WCAg/8158	EPA 365.3
T2218971015	WC-1-T=48	WCAg/8158	EPA 365.3
WCAg/8161 - EPA 365.3			
T2218971016	P8-A-T=48	WCAg/8160	EPA 365.3
T2218971017	P9-A-T=48	WCAg/8160	EPA 365.3
T2218971018	WC-A-T=48	WCAg/8160	EPA 365.3

Certificate of Analysis This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

.....

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2218971)

QC Cross Reference	9		
Lab ID	Sample ID	Prep Batch	Prep Method
WCAt/14754 - EPA 350.1			
T2218971001	DI-T=0		
T2218971002	DI-Dup-T=0		
T2218971003	P8-Ambient-T=0		
T2218971004	P8-Ambient Dup-T=0		
T2218971005	P9-Ambient-T=0		
T2218971006	P9-Ambient Dup-T=0		
T2218971007	P8-1-T=24		
T2218971008	P9-1-T=24		
T2218971009	WC-1-T=24		
T2218971010	P8-A-T=24		
T2218971011	P9-A-T=24		
T2218971012	WC-A-T=24		
T2218971013	P8-1-T=48		
T2218971014	P9-1-T=48		
T2218971015	WC-1-T=48		
T2218971016	P8-A-T=48		
T2218971017	P9-A-T=48		
T2218971018	WC-A-T=48		

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

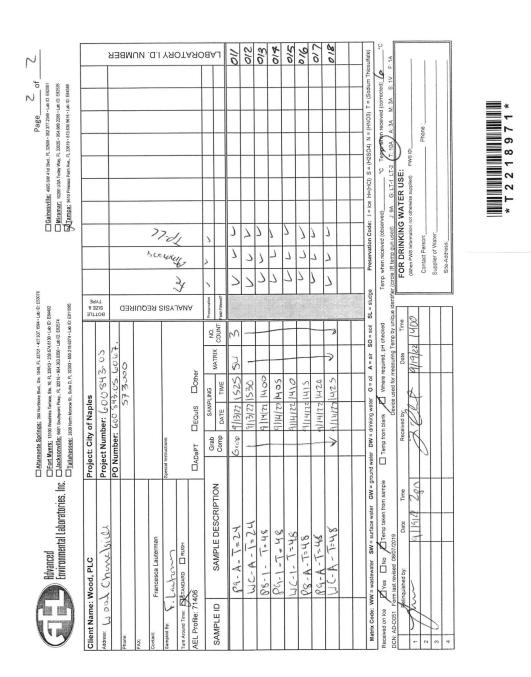
FINAL

Workorder: City of Naples (T2218971)

0 01 2 ID: E6001 ID: E60555 ID: E60595			NBER	NUN	.D.	I Y A	ΟΤΑ	80	8AJ	/ 00/	200	هوي	20%	500	Sec.	< ° 0	9°	200	0/0	= (Sodium Thiosulfate)	id (corrected) (0 *C M: 3A S: 1V F: 1A							
Page0 															-					H=(HCI) S = (H2SO4	G: LT-1 LT-2 T: 10A A: 3A M: 3A S: 1V F)	ise supplied) PWS ID:	Phone :			2 1 8 9 7 1 *	
☐ Gainesvil ☐ Mitamar: Quitampa: °		(2	97, 24				(>	77	1 1	111	71	2 1	1 1	111	777	7	7 7	Preservation Code: = ice	k 2 Where required, pH checked Temp, when received (observed).	FOR DRINKING WATER USE:	(When PWS Information not otherwise supplied)	Contact Person:	Supplier of Water.	Site-Address:		-
1 - Lub ID: E53076 2. E84492 4	36 ¥ 3 311	ZIS	ED	ษากซ	ЭЯ	SISA	ANAL ST		Preservation		12	2	2	2	2	2		3	7	SL = sludge	Temp.							
48, FL 32701 • 407, 937, 159- 1813 • 239 674, 8130 • Lab II 04, 363 9550 • Lab ID: E625 04, 363 9550 • Lab II		5.05	13.05.6067.						MATRIX NO.	511 3	\vdash								7	A = air SO = soil	Where required, pH checked	Date Time	9/19/22 , 400					
☐ Altamonte Springs: 300 kenteae Bou, 58, 104, F. 2701 • 47 327 (584 • Lab D. E5005 □ Ect Myetes: 1010 kentea Farence Se, 16, 15 3131 • 26 32 3131 • 16 21 12 12 12 12 12 12 12 12 12 12 12 12	Naples	: 600843.0S	50.543.009					LEQUIS LOther	SAMPLING DATE TIME	9/14/2010	9114122 1605	1114/22 16 36	114 22 16 35	0491-2/6116	241142211645	0051 2216115	20212212119	9/13/22/51	9131731520	ting water O = oil	ank D Where re	d by:	XIX					
Altamonte Springs: Fort Myers: 13100 Wee Jacksonville; 6681 So Tallahassee: 2639 No	Project: City of Naples	Project Number:	PO Number:			Special Instructions:		UADaPT UE	Grab Comp D	Coreso 9		911	11H	16	-	6	16	18	→ 15	d water DW = drink	Temp from blank	Received by:	Fel	0				
□ Altivanced Environmental Laboratories, Inc. □		e Dr.			Francesca Lauterman		C RUSH		SAMPLE DESCRIPTION	07.1.0	07-Dio-T=0	RS- Amont-1=0	08-Autority On-Teo		P4 - Ambriding Hour - 7- 0	1. T=24 0	1-7=24	-1-7-24	N-T=Z4	Matrix Code: WW = wastewater SW = surface water GW = ground water DW = drinking water O = oil A = air SO = soil	Zves DNo ZTemp taken from sample	Form last revised 08/07/2019 Reliveruished bv: Date Time	11W11					
	Client Name: Wood, PLC	Address: 11/11/1/1/1/1/1/1/	Phone: Phone:	FAX:	Contact: France	Sampled By: FIL	Turn Around Time: Turn Around	AEL Profile: 71406	SAMPLE ID	HQ	50	88	80	04 · D	100	05-1	89-1	Mc-1	QS- A	Matrix Code: WW = was		DCN: AD-D051 Form last revise Reliminished by:	man +	2 //	3	4		

Certificate of Analysis

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.



Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2218971)

Tuesday, October 4, 2022 3:35:54 PM Dates and times are displayed using (-04:00) Page 35 of 35 **Certificate of Analysis**

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

SA BORNTORT

FINAL

Workorder: City of Naples (T2219139)

October 06, 2022

Francesca Lauterman Wood EIS 1101 Channelside Suite 200 Tampa, FL 33602

RE: Workorder: T2219139 City of Naples

Dear Francesca Lauterman:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday September 21, 2022. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Suckey

Sue Bell, Sr Project Manager SBell@aellab.com

Certificate of Analysis This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

FINAL

Workorder: City of Naples (T2219139)

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported	Basis
T2219139001	P8-1 T=96	WA	EPA 200.7	09/16/2022 14:00	09/21/2022 12:40	1	NA
T2219139001	P8-1 T=96	WA	EPA 350.1	09/16/2022 14:00	09/21/2022 12:40	1	NA
T2219139001	P8-1 T=96	WA	EPA 365.3	09/16/2022 14:00	09/21/2022 12:40	1	NA
T2219139002	P9-1 T=96	WA	EPA 200.7	09/16/2022 14:05	09/21/2022 12:40	1	NA
T2219139002	P9-1 T=96	WA	EPA 350.1	09/16/2022 14:05	09/21/2022 12:40	1	NA
T2219139002	P9-1 T=96	WA	EPA 365.3	09/16/2022 14:05	09/21/2022 12:40	1	NA
T2219139003	WC-1 T=96	WA	EPA 200.7	09/16/2022 14:10	09/21/2022 12:40	1	NA
T2219139003	WC-1 T=96	WA	EPA 350.1	09/16/2022 14:10	09/21/2022 12:40	1	NA
T2219139003	WC-1 T=96	WA	EPA 365.3	09/16/2022 14:10	09/21/2022 12:40	1	NA
T2219139004	P8-A T=96	WA	EPA 200.7	09/16/2022 14:15	09/21/2022 12:40	1	NA
T2219139004	P8-A T=96	WA	EPA 350.1	09/16/2022 14:15	09/21/2022 12:40	1	NA
T2219139004	P8-A T=96	WA	EPA 365.3	09/16/2022 14:15	09/21/2022 12:40	1	NA
T2219139005	P9-A T=96	WA	EPA 200.7	09/16/2022 14:20	09/21/2022 12:40	1	NA
T2219139005	P9-A T=96	WA	EPA 350.1	09/16/2022 14:20	09/21/2022 12:40	1	NA
T2219139005	P9-A T=96	WA	EPA 365.3	09/16/2022 14:20	09/21/2022 12:40	1	NA
T2219139006	WC-A T=96	WA	EPA 200.7	09/16/2022 14:25	09/21/2022 12:40	1	NA
T2219139006	WC-A T=96	WA	EPA 350.1	09/16/2022 14:25	09/21/2022 12:40	1	NA
T2219139006	WC-A T=96	WA	EPA 365.3	09/16/2022 14:25	09/21/2022 12:40	1	NA
T2219139007	P8-1 T=168	WA	EPA 200.7	09/19/2022 12:30	09/21/2022 12:40	1	NA
T2219139007	P8-1 T=168	WA	EPA 350.1	09/19/2022 12:30	09/21/2022 12:40	1	NA
T2219139007	P8-1 T=168	WA	EPA 365.3	09/19/2022 12:30	09/21/2022 12:40	1	NA
T2219139008	P9-1 T=168	WA	EPA 200.7	09/19/2022 12:35	09/21/2022 12:40	1	NA
T2219139008	P9-1 T=168	WA	EPA 350.1	09/19/2022 12:35	09/21/2022 12:40	1	NA
T2219139008	P9-1 T=168	WA	EPA 365.3	09/19/2022 12:35	09/21/2022 12:40	1	NA
T2219139009	WC-1 T=168	WA	EPA 200.7	09/19/2022 12:40	09/21/2022 12:40	1	NA
T2219139009	WC-1 T=168	WA	EPA 350.1	09/19/2022 12:40	09/21/2022 12:40	1	NA
T2219139009	WC-1 T=168	WA	EPA 365.3	09/19/2022 12:40	09/21/2022 12:40	1	NA
T2219139010	P8-A T=168	WA	EPA 200.7	09/19/2022 12:45	09/21/2022 12:40	1	NA
T2219139010	P8-A T=168	WA	EPA 350.1	09/19/2022 12:45	09/21/2022 12:40	1	NA
T2219139010	P8-A T=168	WA	EPA 365.3	09/19/2022 12:45	09/21/2022 12:40	1	NA
T2219139011	P9-A T=168	WA	EPA 200.7	09/19/2022 12:50	09/21/2022 12:40	1	NA
T2219139011	P9-A T=168	WA	EPA 350.1	09/19/2022 12:50	09/21/2022 12:40	1	NA
T2219139011	P9-A T=168	WA	EPA 365.3	09/19/2022 12:50	09/21/2022 12:40	1	NA
T2219139012	WC-A T=168	WA	EPA 200.7	09/19/2022 12:55	09/21/2022 12:40	1	NA
T2219139012	WC-A T=168	WA	EPA 350.1	09/19/2022 12:55	09/21/2022 12:40	1	NA

Thursday, October 6, 2022 4:11:56 PM Dates and times are displayed using (-04:00) Page 2 of 36

Certificate of Analysis

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

POWERED BY HORIZON v.13.0.0

FINAL

Workorder: City of Naples (T2219139)

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported	Basis
T2219139012	WC-A T=168	WA	EPA 365.3	09/19/2022 12:55	09/21/2022 12:40	1	NA
T2219139013	P8-1 T=216	WA	EPA 200.7	09/21/2022 11:10	09/21/2022 12:40	1	NA
T2219139013	P8-1 T=216	WA	EPA 350.1	09/21/2022 11:10	09/21/2022 12:40	1	NA
T2219139013	P8-1 T=216	WA	EPA 365.3	09/21/2022 11:10	09/21/2022 12:40	1	NA
T2219139014	P9-1 T=216	WA	EPA 200.7	09/21/2022 11:15	09/21/2022 12:40	1	NA
T2219139014	P9-1 T=216	WA	EPA 350.1	09/21/2022 11:15	09/21/2022 12:40	1	NA
T2219139014	P9-1 T=216	WA	EPA 365.3	09/21/2022 11:15	09/21/2022 12:40	1	NA
T2219139015	WC-1 T=216	WA	EPA 200.7	09/21/2022 11:20	09/21/2022 12:40	1	NA
T2219139015	WC-1 T=216	WA	EPA 350.1	09/21/2022 11:20	09/21/2022 12:40	1	NA
T2219139015	WC-1 T=216	WA	EPA 365.3	09/21/2022 11:20	09/21/2022 12:40	1	NA
T2219139016	P8-A T=216	WA	EPA 200.7	09/21/2022 11:25	09/21/2022 12:40	1	NA
T2219139016	P8-A T=216	WA	EPA 350.1	09/21/2022 11:25	09/21/2022 12:40	1	NA
T2219139016	P8-A T=216	WA	EPA 365.3	09/21/2022 11:25	09/21/2022 12:40	1	NA
T2219139017	P9-A T=216	WA	EPA 200.7	09/21/2022 11:30	09/21/2022 12:40	1	NA
T2219139017	P9-A T=216	WA	EPA 350.1	09/21/2022 11:30	09/21/2022 12:40	1	NA
T2219139017	P9-A T=216	WA	EPA 365.3	09/21/2022 11:30	09/21/2022 12:40	1	NA
T2219139018	WC-A T=216	WA	EPA 200.7	09/21/2022 11:35	09/21/2022 12:40	1	NA
T2219139018	WC-A T=216	WA	EPA 350.1	09/21/2022 11:35	09/21/2022 12:40	1	NA
T2219139018	WC-A T=216	WA	EPA 365.3	09/21/2022 11:35	09/21/2022 12:40	1	NA

FINAL

Workorder: City of Naples (T2219139)

Workorder Summary

Batch Comments

ICPt/3081 - ICP 200.7 Analysis

The matrix spike (MS) recoveries of Potassium for G2208084001 were outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and Matrix Spike Duplicate (MSD) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential high bias in this matrix. No further corrective action is required.

ICPt/3091 - ICP 200.7 Analysis

The matrix spike (MS) and Matrix Spike Duplicate (MSD) recoveries of Iron and Sodium for G2208259001 were outside control criteria. Recoveries in the Laboratory Control Sample (LCS) were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential high bias in this matrix. No further corrective action is required.

WCAt/14882 - Ammonia,E350.1,Water

The matrix spike recovery of Ammonia (N) for T2219090001 was outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and % RPD were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. No further corrective action was required.

WCAt/14885 - Ammonia,E350.1,Water

The matrix spike recovery of Ammonia (N) for T2219139013 was outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and % RPD were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. No further corrective action was required.

Task Comments

T2219139013 (P8-1 T=216) - WCAt/14885 - Ammonia,E350.1,Water

The matrix spike recovery of Ammonia (N) for T2219139013 was outside control criteria. Recoveries in the Laboratory Control Sample (LCS) and % RPD were acceptable, which indicates the analytical batch was in control. The matrix spike outlier suggests a potential low bias in this matrix. No further corrective action was required.

Analysis Results Comments

T2219139013 (P8-1 T=216) - Ammonia (N)

J4|Estimated Result

FINAL

Workorder: City of Naples (T2219139)

Analytical Results Qualifiers

Parameter Qualifiers

 U
 The compound was analyzed for but not detected.

 I
 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

 J4
 Estimated Result

Lab Qualifiers

- G DOH Certification #E82001 (FL NELAC) AEL-Gainesville
- T DOH Certification #E84589 (FL NELAC) AEL-Tampa

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139001 Sample ID: P8-1 T=96		Date Colle Date Rece		16/2022 14 21/2022 12		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.013 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:27	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.08	mg/L	0.03	0.02	1	09/26/2022 15:31	09/26/2022 15:31	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.078	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139002 Sample ID: P9-1 T=96		Date Collected:09/16/2022 14:05Date Received:09/21/2022 12:40				Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.010 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:35	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/26/2022 13:16	09/26/2022 13:16	т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.038	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139003 Sample ID: WC-1 T=96		Date Collected:09/16/2022 14:10Date Received:09/21/2022 12:40					: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:38	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.02 U	mg/L	0.03	0.02	1	09/26/2022 13:17	09/26/2022 13:17	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.009 I	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

TAU

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139004 Sample ID: P8-A T=96		Date Colle Date Rece		16/2022 14 21/2022 12		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.016 I	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:41	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.3	mg/L	0.03	0.01	1	09/26/2022 13:25	09/26/2022 13:25	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.065	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

A DEMONST

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139005 Sample ID: P9-A T=96		Date Colle Date Rece		16/2022 14 21/2022 12		Matrix: Water			
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab	
METALS (EPA 200.7)									
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:44	Т	
WET CHEMISTRY (EPA 350.1)									
Ammonia (N)	0.03	mg/L	0.03	0.01	1	09/26/2022 13:26	09/26/2022 13:26	Т	
WET CHEMISTRY (EPA 365.3)									
Total Phosphorus (as P)	0.005 U	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G	

STAL BORKTOR

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139006 Sample ID: WC-A T=96		Date Colle Date Rece		16/2022 14 21/2022 12		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/23/2022 10:00	09/23/2022 17:47	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.01 U	mg/L	0.03	0.01	1	09/26/2022 13:27	09/26/2022 13:27	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.006 I	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139007 Sample ID: P8-1 T=168		Date Colle Date Rece		19/2022 1: 21/2022 1:		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.013 I	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 14:48	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.3	mg/L	0.03	0.01	1	09/26/2022 13:28	09/26/2022 13:28	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.049	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139008 Sample ID: P9-1 T=168		Date Colle Date Rece		19/2022 1: 21/2022 1:		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.012 I	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 14:50	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.3	mg/L	0.03	0.01	1	09/26/2022 13:29	09/26/2022 13:29	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.005 U	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139009 Sample ID: WC-1 T=168		Date Colle Date Rece		19/2022 1: 21/2022 1:		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 14:53	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.01 U	mg/L	0.03	0.01	1	09/26/2022 13:30	09/26/2022 13:30	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.009 I	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139010 Sample ID: P8-A T=168	-	Date Colle Date Rece		19/2022 1: 21/2022 1:		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.018 I	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 14:56	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.2	mg/L	0.03	0.01	1	09/26/2022 13:31	09/26/2022 13:31	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.065	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139011 Sample ID: P9-A T=168	-	Date Collec Date Recei		19/2022 1: 21/2022 1:		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0080 I	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 14:59	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.03	mg/L	0.03	0.01	1	09/26/2022 13:32	09/26/2022 13:32	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.022	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139012 Sample ID: WC-A T=168		Date Collee Date Recei		19/2022 1: 21/2022 1:		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.017 I	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 15:02	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.01 U	mg/L	0.03	0.01	1	09/26/2022 13:33	09/26/2022 13:33	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.005 U	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139013 Sample ID: P8-1 T=216		Date Collec Date Recei		21/2022 1 21/2022 1		Matrix	Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.015 I	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 15:05	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.3	mg/L	0.03	0.01	1	09/26/2022 13:34	09/26/2022 13:34	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.005 U	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139014 Sample ID: P9-1 T=216		Date Colle Date Rece		21/2022 1 21/2022 12		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.012 I	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 15:08	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.3	mg/L	0.03	0.01	1	09/26/2022 13:43	09/26/2022 13:43	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.006 I	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139015 Sample ID: WC-1 T=216		Date Colle Date Rece		21/2022 1 21/2022 1		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0067 U	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 15:10	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.01 U	mg/L	0.03	0.01	1	09/26/2022 13:46	09/26/2022 13:46	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.005 U	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139016 Sample ID: P8-A T=216		Date Colle Date Rece		21/2022 1 21/2022 1		Matrix	Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.019 I	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 15:19	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.3	mg/L	0.03	0.01	1	09/26/2022 13:47	09/26/2022 13:47	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.033	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139017 Sample ID: P9-A T=216		Date Collec Date Recei		21/2022 1 21/2022 1		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.0075 I	mg/L	0.10	0.0067	1	09/27/2022 09:30	09/30/2022 15:22	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.05	mg/L	0.03	0.01	1	09/26/2022 13:47	09/26/2022 13:47	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.005 U	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

Analytical Results

Lab ID: T2219139018 Sample ID: WC-A T=216		Date Collec Date Recei		21/2022 1 21/2022 1		Matrix	: Water	
Parameter	Results	Units	PQL	MDL	DF	Prepared	Analyzed	Lab
METALS (EPA 200.7)								
Iron	0.099 I	mg/L	0.10	0.0067	1	09/30/2022 15:00	10/01/2022 13:23	Т
WET CHEMISTRY (EPA 350.1)								
Ammonia (N)	0.01 U	mg/L	0.03	0.01	1	09/26/2022 13:48	09/26/2022 13:48	Т
WET CHEMISTRY (EPA 365.3)								
Total Phosphorus (as P)	0.005 U	mg/L	0.01	0.005	1	10/03/2022 11:20	10/04/2022 11:45	G

FINAL

Workorder: City of Naples (T2219139)

QC Results										
QC Batch: Preparation Method: Associated Lab IDs:	ICPt/3081 EPA 200.7 T22191390	01, T221913	9002, T2219	9139003, T2219		Method: 221913900	EPA 200.7 5, T2219139006			
Method Blank(4480034)										
Parameter				Results		Units	PQL	М	IDL	Lab
Iron				0.0067 U		mg/L	0.10	0.	.0067	Т
Lab Control Sample (44	80035)									
Parameter			Units	Spiked Amo	ount Spik	e Result	Spike Recover	y Cont	rol Limits	Lab
Iron			mg/L	1	.95		95	85 - 1	15	Т
Matrix Spike (4480036);	Matrix Spike	• Duplicate	(4480037); F	arent Lab San	nple (T221	9046001)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	1.6	112	70 - 130	1.7	116	2	20	Т
Matrix Spike (4480038);	Matrix Spike	Duplicate	(4480039); F	arent Lab San	nple (G220	8084001)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	5.5	132	70 - 130	5.5	136	1	20	Т

FINAL

Workorder: City of Naples (T2219139)

QC Results

QC Batch: Preparation Method:	ICPt/3089 EPA 200.7				Analy	sis Method:	EPA 200.7			
Associated Lab IDs:			9008, T2219 9016, T2219		9139010), T22191390 ²	I1, T2219139012,	T22191390	13, T221913	9014,
Method Blank(4485801)										
Parameter				Results		Units	PQL	м	DL	Lab
Iron				0.0067 U		mg/L	0.10	0.0	0067	Т
Matrix Spike (4485803);	Matrix Spike	Duplicate (4485804); P	arent Lab San	nple (G2	2208246001)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Contr Limits		Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	1.4	96	70 - 13	30 1.3	90	4	20	Т
Matrix Spike (4485805);	Matrix Spike	Duplicate (4485806); P	arent Lab Sar	nple (T2	219139017)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Contr Limits		Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	.89	88	70 - 13	30 .89	88	0	20	Т
Lab Control Sample (44	85802)									
Parameter			Units	Spiked Amo	ount S	Spike Result	Spike Recover	y Contr	ol Limits	Lab
Iron			mg/L	1		9	90	85 - 1	15	Т

QC Result Comments

Lab Control Sample - 4485802 - Iron

J3|Lab QC Failure

Certificate of Analysis This report shall not be reproduced, except in full,

without the written consent of Advanced Environmental Laboratories, Inc.

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2219139)

QC Results										
QC Batch: Preparation Method: Associated Lab IDs:	ICPt/3091 EPA 200.7 T22191390 ⁻	18			Analys	is Method:	EPA 200.7			
Method Blank(4486442)										
Parameter				Results		Units	PQL	M	DL	Lab
Iron				0.0067 U		mg/L	0.10	0.	0067	Т
Lab Control Sample (44	86443)									
Parameter			Units	Spiked Amo	ount Sp	oike Result	Spike Recovery	/ Contr	ol Limits	Lab
Iron			mg/L	1	1		101	85 - 1	15	Т
Matrix Spike (4486444);	Matrix Spike	Duplicate	(4486445); I	Parent Lab San	nple (G22	208202003)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Contro Limits	l Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	6.3	84	70 - 130	0 6.5	99	2	20	Т
Matrix Spike (4486446);	Matrix Spike	Duplicate	(4486447); I	Parent Lab San	nple (G22	208259001)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Contro Limits	l Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Iron	mg/L	1	3.5	117	70 - 130	0 4.1	175	15	20	Т

FINAL

Workorder: City of Naples (T2219139)

QC Results

QC Batch: Preparation Method: Associated Lab IDs:	T22191390	01, T221913	9010, T2219	,	91390	04, T22	219139005	EPA 365.3 5, T2219139006, 3, T2219139014,		,	,
Method Blank(4487710)											
Parameter				Results			Units	PQL	М	DL	Lab
Total Phosphorus (as P)				0.005 U			mg/L	0.01	0.	005	G
Lab Control Sample (44	87711)										
Parameter			Units	Spiked Amo	ount	Spike	Result	Spike Recover	y Contr	ol Limits	Lab
Total Phosphorus (as P)			mg/L	0.10		.09		94	80 - 1	20	G
Matrix Spike (4487713);	Matrix Spike	Duplicate	(4487714); P	arent Lab Sar	nple (S22023	389001)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Cor Lim	ntrol lits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Total Phosphorus (as P)	mg/L	0.25	.38	96	80 -	120	.38	93	2	20	G

FINAL

Workorder: City of Naples (T2219139)

QC Results

Method Blank(448112 Parameter	,			Results		Units	PQL	MD	L	Lab
Ammonia (N)				0.02 U		mg/L	0.03	0.02	2	Т
Lab Control Sample (4481129)									
Parameter			Units	Spiked Amo	ount Spi	ke Result	Spike Recovery	Contro	I Limits	Lab
Ammonia (N)			mg/L	0.50	.5		105	90 - 110)	Т
Matrix Spike (448113	2); Matrix Spike	Duplicate (4481133); P	arent Lab San	nple (T221	9090001)				
		Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Parameter	Units	Amount	Resource							

QC Result Comments	
Matrix Spike - 4481132 - Ammonia (N)	
J4 Estimated Result	
Matrix Spike Duplicate - 4481133 - Ammonia (N)	
J4 Estimated Result	

FINAL

Workorder: City of Naples (T2219139)

QC Results

QC Batch: Preparation Method:	WCAt/1488 EPA 350.1	5			Analysis	Method: E	EPA 350.1			
Associated Lab IDs:		04, T2219139 12, T2219139	,	,	9139007, T2	219139008,	T2219139009,	T22191390	010, T221913	9011,
Matrix Spike (4481144);	Matrix Spike	e Duplicate (4481145); P	arent Lab Sar	nple (T2219	139013)				
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Ammonia (N)	mg/L	1	.5	23	90 - 110	.3	2	51	10	Т

QC Result Comments

Matrix Spike - 4481144 - Ammonia (N)

J4|Estimated Result

Matrix Spike Duplicate - 4481145 - Ammonia (N)

J4|Estimated Result

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2219139)

QC Results

QC Batch: Preparation Method:	WCAt/14885 EPA 350.1		Ana	alysis Method:	EPA 350.1		
Associated Lab IDs:	T2219139004, T2219 T2219139012, T2219	,	19139006, T22191390 19139014, T22191390	,	, ,	,	39011,
Method Blank(4481142)							
Parameter			Results	Units	PQL	MDL	Lab
Ammonia (N)			0.01 U	mg/L	0.03	0.01	Т
Lab Control Sample (44	81143)						
Parameter		Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Lab
Ammonia (N)		mg/L	0.50	.5	107	90 - 110	Т

FINAL

Workorder: City of Naples (T2219139)

QC Results

Preparation Method:		Analysis Method: 9139015. T2219139016. T2219139017. T221913901	
	,	te (4481147); Parent Lab Sample (T2219139014)	•

Parameter	Units	Spiked Amount	Spike Result	Spike Recovery	Control Limits	Dup Result	Dup Recovery	RPD	RPD Limit	Lab
Ammonia (N)	mg/L	1	1	109	90 - 110	1	104	4	10	Т

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2219139)

QC Cross Referen	ce		
Lab ID	Sample ID	Prep Batch	Prep Method
ICPt/3081 - EPA 200.7			
T2219139001	P8-1 T=96	DGMt/4793	EPA 200.7
T2219139002	P9-1 T=96	DGMt/4793	EPA 200.7
T2219139003	WC-1 T=96	DGMt/4793	EPA 200.7
T2219139004	P8-A T=96	DGMt/4793	EPA 200.7
T2219139005	P9-A T=96	DGMt/4793	EPA 200.7
T2219139006	WC-A T=96	DGMt/4793	EPA 200.7
ICPt/3089 - EPA 200.7			
T2219139007	P8-1 T=168	DGMt/4808	EPA 200.7
T2219139008	P9-1 T=168	DGMt/4808	EPA 200.7
T2219139009	WC-1 T=168	DGMt/4808	EPA 200.7
T2219139010	P8-A T=168	DGMt/4808	EPA 200.7
T2219139011	P9-A T=168	DGMt/4808	EPA 200.7
T2219139012	WC-A T=168	DGMt/4808	EPA 200.7
T2219139013	P8-1 T=216	DGMt/4808	EPA 200.7
T2219139014	P9-1 T=216	DGMt/4808	EPA 200.7
T2219139015	WC-1 T=216	DGMt/4808	EPA 200.7
T2219139016	P8-A T=216	DGMt/4808	EPA 200.7
T2219139017	P9-A T=216	DGMt/4808	EPA 200.7
ICPt/3091 - EPA 200.7			
T2219139018	WC-A T=216	DGMt/4816	EPA 200.7

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2219139)

QC Cross	Reference
----------	-----------

	Sample ID	Bran Batah	Dren Method
Lab ID	Sample ID	Prep Batch	Prep Method
WCAg/8231 - EPA 365.3			
T2219139001	P8-1 T=96	WCAg/8230	EPA 365.3
T2219139002	P9-1 T=96	WCAg/8230	EPA 365.3
T2219139003	WC-1 T=96	WCAg/8230	EPA 365.3
T2219139004	P8-A T=96	WCAg/8230	EPA 365.3
T2219139005	P9-A T=96	WCAg/8230	EPA 365.3
T2219139006	WC-A T=96	WCAg/8230	EPA 365.3
T2219139007	P8-1 T=168	WCAg/8230	EPA 365.3
T2219139008	P9-1 T=168	WCAg/8230	EPA 365.3
T2219139009	WC-1 T=168	WCAg/8230	EPA 365.3
T2219139010	P8-A T=168	WCAg/8230	EPA 365.3
T2219139011	P9-A T=168	WCAg/8230	EPA 365.3
T2219139012	WC-A T=168	WCAg/8230	EPA 365.3
T2219139013	P8-1 T=216	WCAg/8230	EPA 365.3
T2219139014	P9-1 T=216	WCAg/8230	EPA 365.3
T2219139015	WC-1 T=216	WCAg/8230	EPA 365.3
T2219139016	P8-A T=216	WCAg/8230	EPA 365.3
T2219139017	P9-A T=216	WCAg/8230	EPA 365.3
T2219139018	WC-A T=216	WCAg/8230	EPA 365.3
WCAt/14882 - EPA 350.1			
T2219139001	P8-1 T=96		
T2219139002	P9-1 T=96		
T2219139003	WC-1 T=96		

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2219139)

QC Cross Reference Lab ID Sample ID **Prep Batch Prep Method** WCAt/14885 - EPA 350.1 T2219139004 P8-A T=96 T2219139005 P9-A T=96 T2219139006 WC-A T=96 T2219139007 P8-1 T=168 T2219139008 P9-1 T=168 T2219139009 WC-1 T=168 T2219139010 P8-A T=168 T2219139011 P9-A T=168 T2219139012 WC-A T=168 T2219139013 P8-1 T=216 T2219139014 P9-1 T=216 T2219139015 WC-1 T=216 T2219139016 P8-A T=216 T2219139017 P9-A T=216 T2219139018 WC-A T=216

Thursday, October 6, 2022 4:11:56 PM Dates and times are displayed using (-04:00) Page 34 of 36

Certificate of Analysis This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

FINAL

Workorder: City of Naples (T2219139)

Thursday, October 6, 2022 4:11:56 PM Dates and times are displayed using (-04:00) Page 35 of 36 **Certificate of Analysis**

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

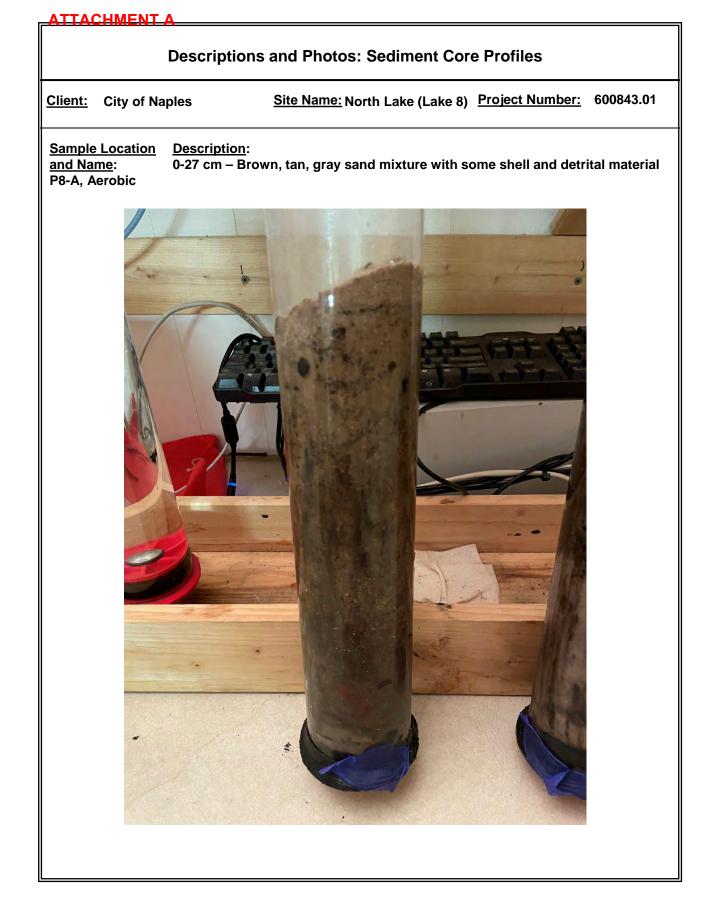
Advanced Environmental Laboratories, Inc 9610 Princess Palm Ave Tampa, FL 33619 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580 Phone: (813) 630-9616 Fax: (813) 630-4327

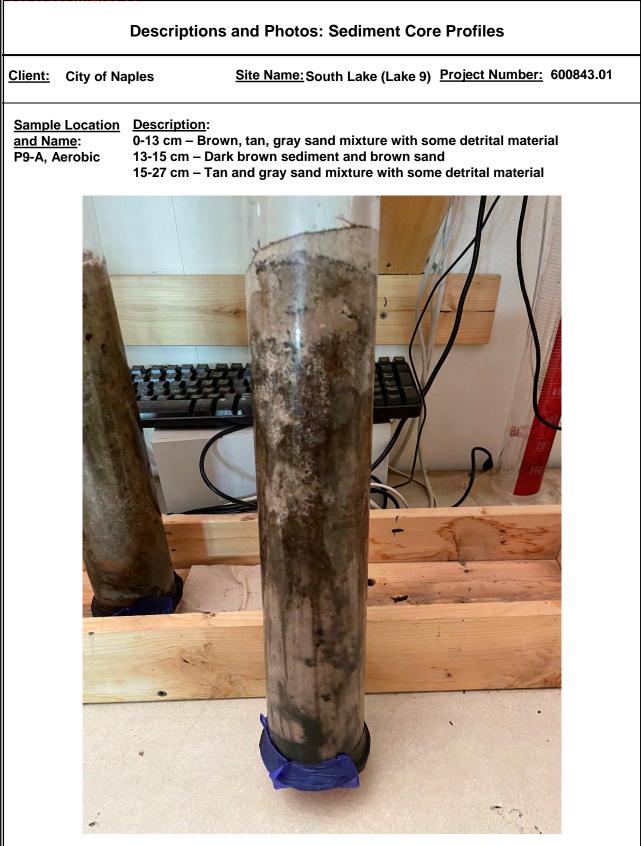
FINAL

Workorder: City of Naples (T2219139)

C		Я	38MI	N .	D.I	79(DTA	טצי ד	AB/	٦	011	012	03	DIU	00	010	110	018		ocultata)	(anniate)	F: 1A				
										_										The second	04) N = (FINU3) I = (Sodium In	Emp. Yoren received (corrected)		Dhone		
Page <u> </u>				5.0	Acu	u	×/		7		1	1		(,	(1					J: 9A G: LT-1 LT-2	3 WATER USE:	(When PWS Information not otherwise supplied) PWS ID:		
		+		-	7-	28	1	-	7	_	ı	1	((1	(1	(l	-	-	servation	Temp. when received (observed)	DRINK	When PWS Informa	Supplier of Water.	Site-Address:
		+					Z	/	7	-	C	1	1	t	ι	((,				Temp. whe	FOR	(When	Supp	Site
Lub ID: E53076 E84492 E811095	TYPE SIZE & OTTLE	s	U38	GUII	зя s	SISY.	IAN	đ	Preservation	Field-Filtered?											SL = sludge	ique identifie		50	Т	
• 407,937,1594 4.8130 • Lab ID: • Lab ID: E82574 19.6274 • Lab ID:		12								COUNT	3	n	3	3	3	3	0	3		_	SO = Soil	H checked Temo hv un	Time	2122		
1048, FL 32701 L 33913 - 239.67 • 904.363.9350 L 32303 • 850.2		3.05	101					ler	MATPIY		3	SW	3	38	R	3	32	SW			A = air	e required, p	Date	921		
thiake Bivd., Ste. errace, Ste. 10, Fl Pixwy, FL 32216 os St., Suite D, F	les	00 843	543					Other	SAMPLING	TIME	9/19/22 1250	1255	2 1110	3/11/2/12/15	121/271120	251125	ab 1130	7/21/22/135			ater 0 = 0	k J Where required, pH checked Temp, when received (obse Device used for measuring Temp by unique identifier (circle IR temp dun used)	0 000 000	1		
ings: 380 Nor 100 Westlinks To 6681 Southpoint 1639 North Monn	of Nap	al :radi	200							DATE		22/101/6	22/216	212 14	er Pil	C/12/2	1/21/	1/2/1	1 1.		drinking w	om blank	Received by:			
□	Project: City of Naples	Project Number: 600 843.				Special Instructions:		DADaPT	Grab	Comp	600	-				_	_	>		_	water DW =	Temp from blank J Where required, pH checked	Re	9		
	Proj					Specia			1	ND											puno		Je	H	+	-
Advanced Environmental Laboratories, Inc.			12541		terman	~	RUSH				T=168	7=1105	- 7= 216	- 7=216	- 7=2110	. 7=216	912-2-	912-2-			SW = sufface water GW = ground water DW = drinking water $O = oil$ A = air SO = soil	Ves ONO ZTemp taken from sample	Date Time	22/m/b		
Advance	Wood, PLC	NHC .	352-7-02-100		Francesca Lauterman	. Leiten	STANDARD	901		NHO	PG- A-	- 4- 11	-	1-100	1-071	A-80	A-P9	WC-A			W = waetewater	Ves DNo	Relinquished by:	N		
8		NOON SADDA	101-1101	AX:	Contact:	Sampled By:	Turn Around Time: Kastandard 🔲 RUSH	AEL Profile: 71406		SAMPLEIU											3	i	DCN: AU-DUST FOI	my .	2// //	4

Thursday, October 6, 2022 4:11:56 PM Dates and times are displayed using (-04:00) Page 36 of 36 **Certificate of Analysis**


This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.



APPENDIX 4 - CORE PHOTO LOG

ATTACHMENT / **Descriptions and Photos: Sediment Core Profiles** Site Name: South Lake (Lake 9) Project Number: 600843.01 <u>Client:</u> City of Naples Sample Location Description: 0-13 cm – Brown, tan, gray sand mixture with some detrital material and Name: P9-1, Anoxic 13-15 cm – Dark brown sediment and brown sand 15-27 cm – Tan and gray sand mixture with some detrital material

